Plants are responsive to temperature, and can distinguish differences of 1ºC. In Arabidopsis, warmer temperature accelerates flowering and increases elongation growth (thermomorphogenesis). The mechanisms of temperature perception are however largely unknown. We describe a major thermosensory role for the phytochromes (red light receptors) during the night. Phytochrome null plants display a constitutive warm temperature response, and consistent with this, we show in this background that the warm temperature transcriptome 2 becomes de-repressed at low temperatures. We have discovered phytochrome B (phyB) directly associates with the promoters of key target genes in a temperature dependent manner.The rate of phyB inactivation is proportional to temperature in the dark, enabling phytochromes to function as thermal timers, integrating temperature information over the course of the night. One Sentence Summary:The plant temperature transcriptome is controlled at night by phytochromes, acting as thermoresponsive transcriptional repressors. Main Text:Plant development is responsive to temperature, and the phenology and distribution of crops and wild plants have already altered in response to climate change (1, 2). In Arabidopsis thaliana, warm temperature-mediated elongation growth and flowering is dependent on the bHLH transcription factors PHYTOCHROME INTERACTING FACTOR4 and 5 (PIF4 and 5) (3-6). Growth at 27ºC reduces the activity of the Evening Complex (EC) resulting in greater PIF4 transcription. The EC is a transcriptional repressor made up of the proteins EARLY FLOWERING3 (ELF3), ELF4 and LUX ARRHYTHMO (LUX) (7-9). To test if the EC is also required for hypocotyl elongation responses below 22ºC, we examined the behavior of elf3-1 and lux-4 at 12 and 17ºC. Hypocotyl elongation in elf3-1 and lux-4 is largely suppressed at lower temperatures (Fig. 1A, B), which is consistent with cold temperatures being able to suppress PIF4 overexpression phenotypes (10). Since PHYTOCHROME B (PHYB) was identified as a QTL for thermal responsiveness and PIF4 activity is regulated by phytochromes (8, 11), we investigated whether these red light receptors control hypocotyl elongation in the range 12 to 22ºC. Plants lacking phytochrome activity (12) show constitutively long hypocotyls at 12ºC and 17ºC. Thus phytochromes are essential for responding to temperature (Fig. 1C, D and Fig. S1).We used transcriptome analysis to determine whether disrupted thermomorphogenesis in phyABCDE is specific for temperature signaling or is a consequence of misregulated growth pathways. To capture diurnal variation in thermoresponsiveness, we sampled seedlings over 24 hours at 22 and 27ºC. Clustering analysis reveals 20 groups of transcripts ( Fig. 2A and Fig. S3; described in supplement). Thermomorphogenesis occurs predominantly at night and is driven by PIF4. Consistent with this, we observe PIF4 is present in cluster 20, which is more highly expressed at 27ºC during darkness. Clusters 15 and 16 represent the other major groups of 3 nighttim...
Plant development is highly responsive to ambient temperature, and this trait has been linked to the ability of plants to adapt to climate change. The mechanisms by which natural populations modulate their thermoresponsiveness are not known. To address this, we surveyed Arabidopsis accessions for variation in thermal responsiveness of elongation growth and mapped the corresponding loci. We find that the transcriptional regulator EARLY FLOWERING3 (ELF3) controls elongation growth in response to temperature. Through a combination of modeling and experiments, we show that high temperature relieves the gating of growth at night, highlighting the importance of temperature-dependent repressors of growth. ELF3 gating of transcriptional targets responds rapidly and reversibly to changes in temperature. We show that the binding of ELF3 to target promoters is temperature dependent, suggesting a mechanism where temperature directly controls ELF3 activity.
The Arabidopsis circadian clock orchestrates gene regulation across the day/night cycle. Although a multiple feedback loop circuit has been shown to generate the 24-hr rhythm, it remains unclear how robust the clock is in individual cells, or how clock timing is coordinated across the plant. Here we examine clock activity at the single cell level across Arabidopsis seedlings over several days under constant environmental conditions. Our data reveal robust single cell oscillations, albeit desynchronised. In particular, we observe two waves of clock activity; one going down, and one up the root. We also find evidence of cell-to-cell coupling of the clock, especially in the root tip. A simple model shows that cell-to-cell coupling and our measured period differences between cells can generate the observed waves. Our results reveal the spatial structure of the plant clock and suggest that unlike the centralised mammalian clock, the Arabidopsis clock has multiple coordination points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.