This study uses a deep learning approach to forecast ozone concentrations over Seoul, South Korea for 2017. We employ a deep convolutional neural network (CNN). We apply this method to predict the hourly ozone concentration on each day for the entire year using several predictors from the previous day, including the wind fields, temperature, relative humidity, pressure, and precipitation, along with in-situ ozone and NO2 concentrations. We refer to a history of all observed parameters between 2014 and 2016 for training the predictive models. Model-measurement comparisons for the 25 monitoring sites for the year 2017 report average indexes of agreement (IOA) of 0.84-0.89 and a Pearson correlation coefficient of 0.74-0.81, indicating reasonable performance for the CNN forecasting model. Although the CNN model successfully captures daily trends as well as yearly high and low variations of the ozone concentrations, it notably underpredicts high ozone peaks during the summer. The forecasting results are generally more accurate for the stations located in the southern regions of the Han River, the result of more stable topographical and meteorological conditions. Furthermore, through two separate daytime and nighttime forecasts, we find that the monthly IOA of the CNN model is 0.05-0.30 higher during the daytime, resulting from the unavailability of some of the input parameters during the nighttime. While the CNN model can predict the next 24 hours of ozone concentrations within less than a minute, we identify several limitations of deep learning models for real-time air quality forecasting for further improvement.
Issues regarding air quality and related health concerns have prompted this study, which develops an accurate and computationally fast, efficient hybrid modeling system that combines numerical modeling and machine learning for forecasting concentrations of surface ozone. Currently available numerical modeling systems for air quality predictions (e.g., CMAQ) can forecast 24 to 48 h in advance. In this study, we develop a modeling system based on a convolutional neural network (CNN) model that is not only fast but covers a temporal period of two weeks with a resolution as small as a single hour for 255 stations. The CNN model uses meteorology from the Weather Research and Forecasting model (processed by the Meteorology-Chemistry Interface Processor), forecasted air quality from the Community Multi-scale Air Quality Model (CMAQ), and previous 24-h concentrations of various measurable air quality parameters as inputs and predicts the following 14-day hourly surface ozone concentrations. The model achieves an average accuracy of 0.91 in terms of the index of agreement for the first day and 0.78 for the fourteenth day, while the average index of agreement for one day ahead prediction from the CMAQ is 0.77. Through this study, we intend to amalgamate the best features of numerical modeling (i.e., fine spatial resolution) and a deep neural network (i.e., computation speed and accuracy) to achieve more accurate spatio-temporal predictions of hourly ozone concentrations. Although the primary purpose of this study is the prediction of hourly ozone concentrations, the system can be extended to various other pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.