Numerical weather prediction models require ever‐growing computing time and resources but, still, have sometimes difficulties with predicting weather extremes. We introduce a data‐driven framework that is based on analog forecasting (prediction using past similar patterns) and employs a novel deep learning pattern‐recognition technique (capsule neural networks, CapsNets) and an impact‐based autolabeling strategy. Using data from a large‐ensemble fully coupled Earth system model, CapsNets are trained on midtropospheric large‐scale circulation patterns (Z500) labeled 0–4 depending on the existence and geographical region of surface temperature extremes over North America several days ahead. The trained networks predict the occurrence/region of cold or heat waves, only using Z500, with accuracies (recalls) of 69–45% (77–48%) or 62–41% (73–47%) 1–5 days ahead. Using both surface temperature and Z500, accuracies (recalls) with CapsNets increase to ∼80% (88%). In both cases, CapsNets outperform simpler techniques such as convolutional neural networks and logistic regression, and their accuracy is least affected as the size of the training set is reduced. The results show the promises of multivariate data‐driven frameworks for accurate and fast extreme weather predictions, which can potentially augment numerical weather prediction efforts in providing early warnings.
Understanding the response of atmospheric blocking events to climate change has been of great interest in recent years. However, potential changes in the blocking area (size), which can affect the spatiotemporal characteristics of the resulting extreme events, have not received much attention. Using two large‐ensemble, fully coupled general circulation model (GCM) simulations, we show that the size of blocking events increases with climate change, particularly in the Northern Hemisphere (by as much as 17%). Using a two‐layer quasi‐geostrophic model and a dimensional analysis technique, we derive a scaling law for the size of blocking events, which shows that area mostly scales with width of the jet times the Kuo scale (i.e., the length of stationary Rossby waves). The scaling law is validated in a range of idealized GCM simulations. Predictions of this scaling law agree well with changes in blocking events' size under climate change in fully coupled GCMs in winters but not in summers.
The movement of tropical cyclones (TCs), particularly around the time of landfall, can substantially affect the resulting damage. Recently, trends in TC translation speed and the likelihood of stalled TCs such as Harvey have received significant attention, but findings have remained inconclusive. Here, we examine how the June-September steering wind and translation speed of landfalling Texas TCs change in the future under anthropogenic climate change. Using several large-ensemble/multi-model datasets, we find pronounced regional variations in the meridional steering wind response over North America, but-consistently across models-stronger June-September-averaged northward steering winds over Texas. A cluster analysis of daily wind patterns shows more frequent circulation regimes that steer landfalling TCs northward in the future. Downscaling experiments show a 10-percentagepoint shift from the slow-moving to the fast-moving end of the translation-speed distribution in the future. Together, these analyses indicate increases in the likelihood of faster-moving landfalling Texas TCs in the late 21 st century.
Numerical weather prediction (NWP) models require ever-growing computing time/resources, but still, have difficulties with predicting weather extremes. Here we introduce a data-driven framework that is based on analog forecasting (prediction using past similar patterns) and employs a novel deep learning pattern-recognition technique (capsule neural networks, CapsNets) and impact-based auto-labeling strategy. CapsNets are trained on mid-tropospheric large-scale circulation patterns (Z500) labeled $0-4$ depending on the existence and geographical region of surface temperature extremes over North America several days ahead. The trained networks predict the occurrence/region of cold or heat waves, only using Z500, with accuracies (recalls) of $69\%-45\%$ $(77\%-48\%)$ or $62\%-41\%$ $(73\%-47\%)$ $1-5$ days ahead. CapsNets outperform simpler techniques such as convolutional neural networks and logistic regression. Using both temperature and Z500, accuracies (recalls) with CapsNets increase to $\sim 80\%$ $(88\%)$, showing the promises of multi-modal data-driven frameworks for accurate/fast extreme weather predictions, which can augment NWP efforts in providing early warnings.
To better understand the dynamics and impacts of blocking events, their 3D structure needs to be further investigated. We present a comprehensive composite analysis of the 3D structure of blocks and its response to future climate change over North Pacific, North Atlantic, and Russia in summers and winters using reanalysis and two large-ensemble datasets from CESM1 and GFDLCM3. In reanalysis, over both ocean and land, the anomalous winds are equivalent-barotropic in the troposphere and stratosphere, and temperature anomalies are positive throughout the troposphere and negative in the lower stratosphere. The main seasonal and regional differences are that blocks are larger/stronger in winters; over oceans, the temperature anomaly is shifted westward due to latent heating. Analyzing the temperature tendency equation shows that in all three sectors, adiabatic warming due to subsidence is the main driver of the positive temperature anomaly; however, depending on season and region, meridional thermal advection and latent heating might have leading-order contributions too. Both GCMs are found to reproduce the climatological 3D structure remarkably well, but sometimes disagree on future changes. Overall, the future summertime response is weakening of all fields (except for specific humidity), although the impact on near-surface temperature is not necessarily weakened; e.g., the blocking-driven near-surface warming over Russia intensifies. The wintertime response is strengthening of all fields, except for temperature in some cases. Responses of geopotential height and temperature are shifted westward in winters, most likely due to latent heating. Results highlight the importance of process-level analyses of blocks’ 3D structure for improved understanding of the resulting temperature extremes and their future changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.