In the present study, various hydrogen bonded complexes between five-fluorouracil (FU) with AT and GC base pairs were studied. First, to determine the affinity of different sites of the parent structures (FU, AT, and GC) for the hydrogen bond formation, their molecular electrostatic potentials are explored. The complexation energies and the strength of individual HBs of the plausible complexes were evaluated by energetic, geometric, spectroscopic, topologic, and molecular orbital descriptors. Our results reveal that, the FU-GC complexes (34.76-44.42 kcal mol) are more stable than the FU-AT ones (21.00-30.35 kcal mol). Among the complexes, the FU3-AT1 and FU3-GC3 are the most stable structures in the both series, which can be related to the sites with the highest affinity. Second, a detail analysis of the hydrogen bond descriptors were performed to elucidate the effect of FU on the strength of HB interactions within the base pairs. Interestingly, due to the formation of various interactions between the active sites of basic molecules, the strength of HB within the base pairs in the most cases increase about +2.75 and +.57 kcal mol for the GC and AT nucleobases, respectively. Finally, several aromatic indices (HOMA, FLU, NICS (0) and NICS (1)) were applied to evaluate the significance of π-electron delocalization (π-ED) of 5/6 membered rings. These results clearly show that the π-ED of the benchmark systems increase with the formation or strengthening of the HB, which is in line with the resonance assisted hydrogen bond theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.