This study presents an intelligent fault classification method for identification of transformer winding fault through transfer function (TF) analysis. For this analysis support vector machine (SVM) is used. The required data for training and testing of SVM are obtained by measurement on two groups of transformers (one is a classic 20 kV transformer and the other is a model transformer) under intact condition and under different fault conditions (axial displacement, radial deformation, disc space variation and short circuit of winding). Two different features extracted from the measured TFs are then used as the inputs to SVM classifier for fault classification. The accuracy of proposed method is compared with the accuracy of past well-known works. This comparison indicates that the proposed method can be used as a reliable method for transformer winding fault recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.