This study deals with the launch time of main characteristic of NH3-H 2O absorption chiller under different working condition. The aim of this work was about to scrutinize a lumped-parameter dynamic simulation of aqua-ammonia absorption chiller in addition to investigating the effect of subcooled liquid at condenser/absorber outlet on absorption chiller’s key parameters launch time. Also, the effect of ambient temperature on absorption chiller’s key parameters’ launch time is studied. In order to determine the thermodynamic properties of the working fluid, the Engineering Equation Solver software is applied. By making a link between Engineering Equation Solver and MATLAB software, the differential equations are solved in the MATLAB software environment by fourth-order Rung–Kutta method. According to the result, increase of the sub-cool liquid temperature at condenser outlet has no effect on absorption chiller’s key parameters’ launch time. Besides, 10 ℃-increase in subcooled liquid temperature at the absorber outlet leads to decreasing the launch time of the coefficient of performance to 19.35%. The result shows that if cooling tower temperature goes from 22 ℃ to 30 ℃, launch time of the coefficient of performance rises by 10.43%, while evaporator heat transfer rate falls by 30%. To validate the dynamic model, the results deduced from numerical simulation are compared with peer steady–state results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.