In plants, α-Lipoic acid (ALA) is considered a dithiol short-chain fatty acid with several strong antioxidative properties. To date, no data are conclusive regarding its effects as an exogenous application on salt stressed sorghum plants. In this study, we investigated the effect of 20 µM ALA as a foliar application on salt-stressed sorghum plants (0, 75 and 150 mM as NaCl). Under saline conditions, the applied-ALA significantly (p ≤ 0.05) stimulated plant growth, indicated by improving both fresh and dry shoot weights. A similar trend was observed in the photosynthetic pigments, including Chl a, Chl b and carotenoids. This improvement was associated with an obvious increase in the membrane stability index (MSI). At the same time, an obvious decrease in the salt induced oxidative damages was seen when the concentration of H2O2 and malondialdehyde (MDA) was reduced in the salt stressed leaf tissues. Generally, ALA-treated plants demonstrated higher antioxidant enzyme activity than in the ALA-untreated plants. A moderate level of salinity (75 mM) induced the highest activities of superoxide dismutase (SOD), guaiacol peroxidase (G-POX), and ascorbate peroxidase (APX). Meanwhile, the highest activity of catalase (CAT) was seen with 150 mM NaCl. Interestingly, applied-ALA led to a substantial decrease in the concentration of both Na and the Na/K ratio. In contrast, K and Ca exhibited a considerable increase in this respect. The role of ALA in the regulation of K+/Na+ selectivity under saline condition was confirmed through a molecular study (RT-PCR). It was found that ALA treatment downregulated the relative gene expression of plasma membrane (SOS1) and vacuolar (NHX1) Na+/H+ antiporters. In contrast, the high-affinity potassium transporter protein (HKT1) was upregulated.
Global agricultural systems are under unprecedented pressures due to climate change. Advanced nano-engineering can help increase crop yields while ensuring sustainability. Nanotechnology improves agricultural productivity by boosting input efficiency and reducing waste. Alkaloids as one of the numerous secondary metabolites that serve variety of cellular functions essential for physiological processes. This study tests the competence of silver nanoparticles (AgNPs) in boosting alkaloids accumulation in Catharanthus roseus suspension cultures in relation to the expression of C. roseus Mitogen Activated Protein Kinase 3 (CrMPK3) and Strictosidine Synthase (STR) genes. Five concentrations (5, 10, 15, 20 and 25 mg·L−1) of AgNPs were utilized in addition to deionized water as control. Results reflected binary positive correlations among AgNPs concentration, oxidative stress indicated with increase in hydrogen peroxide and malondialdehyde contents, activities of ascorbate peroxidase and superoxide dismutase, expression of the regulatory gene CrMPK3 and the alkaloid biosynthetic gene STR as well as alkaloids accumulation. These correlations add to the growing evidence that AgNPs can trigger the accumulation of alkaloids in plant cells through a signaling pathway that involves hydrogen peroxide and MAPKs, leading to up-regulation of the biosynthetic genes, including STR gene.
We investigated the role of biochar and chitosan in mitigating salt stress in jute (Corchorus olitorius L. cv. O-9897) by exposing twenty-day-old seedlings to three doses of salt (50, 100, and 150 mM NaCl). Biochar was pre-mixed with the soil at 2.0 g kg−1 soil, and chitosan-100 was applied through irrigation at 100 mg L−1. Exposure to salt stress notably increased lipid peroxidation, hydrogen peroxide content, superoxide radical levels, electrolyte leakage, lipoxygenase activity, and methylglyoxal content, indicating oxidative damage in the jute plants. Consequently, the salt-stressed plants showed reduced growth, biomass accumulation, and disrupted water balance. A profound increase in proline content was observed in response to salt stress. Biochar and chitosan supplementation significantly mitigated the deleterious effects of salt stress in jute by stimulating both non-enzymatic (e.g., ascorbate and glutathione) and enzymatic (e.g., ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase superoxide dismutase, catalase, peroxidase, glutathione S-transferase, glutathione peroxidase) antioxidant systems and enhancing glyoxalase enzyme activities (glyoxalase I and glyoxalase II) to ameliorate reactive oxygen species damage and methylglyoxal toxicity, respectively. Biochar and chitosan supplementation increased oxidative stress tolerance and improved the growth and physiology of salt-affected jute plants, while also significantly reducing Na+ accumulation and ionic toxicity and decreasing the Na+/K+ ratio. These findings support a protective role of biochar and chitosan against salt-induced damage in jute plants.
This study aims to predict the behavior of different tomato rootstocks under drought stress conditions. SCoT and CDDP analyses were employed to characterize the genetic relatedness among a commercial drought-sensitive tomato hybrid (cv. Bark) and four wild tomato accessions (LA2711, LA1995, LA3845, and LA4285) known for their tolerance to adverse conditions. The Bark plants were grafted onto the aforementioned wild accessions and self-grafted as control, and then the behavior of all graft unions was followed under normal and drought stress conditions. Our results showed a general genotype-dependent better growth and yield of heterografts than autografts under all growth conditions. Furthermore, clustering analysis based on growth, yield quantity and quality traits, and the leaf content of minerals, ABA, GA3, and proline, in addition to the activity of APX, POD, and DHAR reflected the same grouping pattern of the studied rootstocks exhibited by SCoT and CDDP. The identical grouping pattern supports the utilization of SCoT and CDDP as a robust screening tool helpful to predict the physiological and agronomical behavior of grafting on different tomato rootstocks. Furthermore, grafting could be a cost-efficient alternative method to improve drought tolerance in sensitive tomato genotypes.
This study was designed to preparecarboxyl-functionalized poly (N-isopropylacrylamide) PNIPAM microgels having excellent catalytic properties.Recently, researchers are trying to fabricate cost effective and efficient hybrid catalytic materials for the synthesis of nitrogenous compounds along with enhanced optical properties. For the same motive, synthesis of carboxyl-functionalized PNIPAM microgels was performed by using polymerization of soap-free emulsion of N-isopropyl acrylamide, which is NIPAM along with acrylic acid (AA). The thiol group was introduced through the imide bond mediated by carbodiimide, between carboxyl-functionalized microgels through carboxyl group and aminoethanethiol (AET). Copper, Palladium and Cu/Pd nanoparticles were incorporated successfully into thiol-functionalized PNIPAM microgels through metals thiol linkage. The synthesized microgels and hybrid encompassing metallic nanoparticles were characterized in detail by using Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron (XPS) and Fourier transformed infrared spectroscopy for structural interpretation. The thermal properties of the pure and hybrid microgels were inspected by TG analysis. The prepared nanocomposites PNIPAM-Cu, PNIPAM-Pd and PNIPAM-Cu/Pd exhibited decent catalytic properties for the degradation of 4-Nitrophenol and methylene blue, but the bimetallic Cu/Pd have remarkable catalytic properties. The catalytic reaction followed pseudo-first-order reaction with rate constants 0.223 min−1, 0.173 min−1 for 4-Nitrophenol and methylene blue in that order. In this study,we were able to establish that Cu/Pd hybrid is an efficient catalyst for 4-Nitrophenol and methylene blue as compared to its atomic analogue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.