The noise causes many problems and damage on human health. There is enough scientific evidence that noise exposure can induce hearing impairment, hypertension and ischemic heart disease, annoyance, sleep disturbance. Especially in case of long-term exposure to noise, the noise can cause permanent illnesses. People are mostly exposed to noise in work areas and life environments. The effects of noise on human health are increasing rapidly. In this study, real-time noise values were measured in the fair area. The measured noise values exceeded the international noise values. The results of this measurement show that as long as experts do not take precautions, people working in fair are at risk of constant noise.
In this study, pure titanium and hydroxyapatite (HA) doped titanium alloys used as Surgical Implant Materials by weight percentage (wt%) of 5% and 10% were sintered by powder metallurgy method. Total 9 samples of these alloys are produced, three of them are pure titanium's, which are sintered at 900, 1000 and 1150°C temperatures, respectively, for 4 h. From the rest of 6 samples, 3 samples were added 5 wt% HA and the last 3 samples were produced by doped 10 wt% HA. Titanium alloys produced by admixture with HA are sintered for 4 h at 900, 1000, 1150°C temperatures, respectively. Titanium and HA powders were milled for 2 h in a ball-milling mixer and then pressed for half an hour at 20 MPa pressure. EDX, SEM, XRD and Vickers hardness tests were carried out for the analysis of the samples. As a result of the analysis, it was observed that different sintering temperatures caused to various Vickers hardness values and micro-structural changes occurred for pure titanium and HA doped titanium alloys. In addition, multiple phase and Ti plus HA structures were detected in XRD diffractometers of the samples at these temperatures. Most importantly, for the first time in our study, P 3 Ti 5 phase was revealed with 00-045-0888>XRD card. Finally, the effects of sintering temperatures and HA-doped amounts on particle sizes and pore sizes of the samples were determined by SEM analysis.
The Wolfram (W), Silicium (Si) and Molybdenum (Mo) doped Co-Cr biomedical alloy were fabricated by additive manufacturing method, which is part of powder metadology. The mixture of Wolfram (W), Silicium (Si), Chrome (Cr) and Cobalt (Co) alloy is known good wear and corrosion resistance among of biomedical applications. By addition of Molybdenum (Mo) into the structure of alloy, the structure become more stbale also increase the corrosion and wear resistance. In addition, the effects of secondary annealing process on the alloy were investigated. The microstructure of the produced alloy was analyzed by X-ray diffraction method XRD, Energy Dispersive X-Ray Analysis EDX and scanning electron microscope SEM. Moreover, Electrochemical corrosion test, micro hardness and density measurements were performed to investigate the mechanical properties of the alloy. As a result of the analyzes, the effects of Molydenum (Mo) doped and secondary annealing on the microstructure and mechanical properties of bioalloying were determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.