Summary 1. Water‐level fluctuations are typical of lakes located in the semi‐arid Mediterranean region, which is characterised by warm rainy winters and hot dry summers. Ongoing climate change may exacerbate fluctuations and lead to more severe episodes of drought, so information on the effects of water level on the functioning of lake ecosystems in such regions is crucial. 2. In eutrophic Lake Eymir, Turkey, we conducted a 4‐month (summer) field experiment using cylindrical 0.8‐m‐ (low‐water‐level) and 1.6‐m‐deep (high‐water‐level) mesocosms (kept open to the sediment and atmosphere). Fish (tench, Tinca tinca, and bleak, Alburnus escherichii) were added to half of the mesocosms, while the rest were kept fishless. Ten shoots of Potamogeton pectinatus were transplanted to each mesocosm. 3. Sampling for physicochemical variables, chlorophyll a (chl‐a), zooplankton and per cent plant volume inhabited (PVI%) by macrophytes was conducted weekly during the first 5 weeks, and subsequently biweekly. Macrophytes were harvested on the last sampling date. During the course of the experiment, the water level decreased by 0.41 ± 0.06 m. 4. Throughout the experiment, fish affected zooplankton abundance (−), nutrient concentrations (+), chl‐a (+) and water clarity (−) most strongly in the low‐water‐level mesocosms and the zooplankton community shifted towards dominance of small‐sized forms. The fishless mesocosms had a higher zooplankton/phytoplankton ratio, suggesting higher grazing. 5. Greatest macrophyte growth was observed in the low‐water‐level fishless mesocosms. However, despite high nutrient concentrations and low water clarity, macrophytes were also abundant in the fish mesocosms and particularly increased following a water‐level decrease from midsummer onwards. Macrophyte growth was poor in the high‐water‐level mesocosms, even in the fishless ones with high water clarity. This was ascribed to extensive periphyton development reducing light availability for the macrophytes. 6. Our results indicate that a reduction in water level during summer may help maintain the growth of macrophytes in Mediterranean eutrophic shallow lakes, despite a strong negative effect of fish predation on water clarity. It is therefore probable that an expected negative effect of global climate change on water clarity because of eutrophication and enhanced top‐down control of fish may be, at least partly, counteracted by reduced water level, provided that physical disturbance is not severe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.