We study the privacy-cost trade-off in a smart meter (SM) system with a renewable energy source (RES) and a finitecapacity rechargeable battery (RB). Privacy is measured by the mutual information rate between the energy demand and the energy received from the grid, where the latter also determines the cost, and hence, reported by the SM to the utility provider (UP). We consider a renewable energy generation process that fully charges the RB at random time instants, and its realization is assumed to be known also by the UP. We reformulate the problem as a Markov decision process (MDP), and solve it by dynamic programming (DP) to design battery charging and discharging policies that minimize a linear combination of the privacy leakage and energy cost. We also propose a lower bound and two alternative low-complexity energy management policies, one of which is shown numerically to perform close to the MDP solution.Index Terms-Home energy management, Markov decision processes, privacy, smart meter.
We consider a user releasing her data containing some personal information in return of a service. We model user's personal information as two correlated random variables, one of them, called the secret variable, is to be kept private, while the other, called the useful variable, is to be disclosed for utility. We consider active sequential data release, where at each time step the user chooses from among a finite set of release mechanisms, each revealing some information about the user's personal information, i.e., the true hypotheses, albeit with different statistics. The user manages data release in an online fashion such that maximum amount of information is revealed about the latent useful variable, while the confidence for the sensitive variable is kept below a predefined level. For the utility, we consider both the probability of correct detection of the useful variable and the mutual information (MI) between the useful variable and released data. We formulate both problems as a Markov decision process (MDP), and numerically solve them by advantage actor-critic (A2C) deep reinforcement learning (RL).
Internet of things (IoT) devices are becoming increasingly popular thanks to many new services and applications they offer. However, in addition to their many benefits, they raise privacy concerns since they share fine-grained time-series user data with untrusted third parties. In this work, we study the privacy-utility trade-off (PUT) in time-series data sharing. Existing approaches to PUT mainly focus on a single data point; however, temporal correlations in time-series data introduce new challenges. Methods that preserve the privacy for the current time may leak significant amount of information at the trace level as the adversary can exploit temporal correlations in a trace. We consider sharing the distorted version of a user's true data sequence with an untrusted third party. We measure the privacy leakage by the mutual information between the user's true data sequence and shared version. We consider both instantaneous and average distortion between the two sequences, under a given distortion measure, as the utility loss metric. To tackle the historydependent mutual information minimization, we reformulate the problem as a Markov decision process (MDP), and solve it using asynchronous actor-critic deep reinforcement learning (RL). We apply our optimal data release policies to location trace privacy scenario, and evaluate the performance of the proposed policy numerically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.