Nasal carriers of Staphylococcus aureus are important reservoirs with risk of developing endogenous infections or transmitting infections to susceptible individuals. Methicillin-resistant S. aureus (MRSA) are associated with higher rates of treatment failure. Some strains of S. aureus produce slime which is believed to make the microorganisms more resistant to antibiotics and host defenses. The antibacterial activity of ethyl acetate : n-hexane (EtOAc : HEX) extracts of Mulinum spinosum (5 : 95% EtOAc : HEX, 50 : 50% EtOAc : HEX, 70 : 30% EtOAc : HEX and mix 20 : 80/30 : 70% EtOAc : HEX, 50 : 50/70 : 30/100 : 0% EtOAc : HEX) were assayed against 3 slime-producing S. aureus strains and 2 MRSA strains isolated from nasal carriers. S. aureus ATCC 35556 slime-producing strain and MRSA ATCC 43300 strain were used as controls. The extracts were prepared using flash chromatography. M. spinosum 5 : 95% AcOEt : HEX showed antibacterial effect against all slime-producing strains (MIC: 500 µg/mL) and the highest activity against MRSA strains (MIC: 500 to 1000 µg/mL). All M. spinosum extracts assayed were active against slime-producing S. aureus and MRSA at doses between 500 and 4000 µg/mL. Both, slime-producing S. aureus and MRSA are highly contagious and hardly eradicated by antibiotic therapies. So, there is an increasing need to find new substances with the ability to inhibit these strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.