Detection of developmental phenotypes in zebrafish embryos typically involves a visual assessment and scoring of morphological features by an individual researcher. Subjective scoring could impact results and be of particular concern when phenotypic effect patterns are also used as a diagnostic tool to classify compounds. Here we introduce a quantitative morphometric approach based on image analysis of zebrafish embryos. A software called FishInspector was developed to detect morphological features from images collected using an automated system to position zebrafish embryos. The analysis was verified and compared with visual assessments of 3 participating laboratories using 3 known developmental toxicants (methotrexate, dexamethasone, and topiramate) and 2 negative compounds (loratadine and glibenclamide). The quantitative approach exhibited higher sensitivity and made it possible to compare patterns of effects with the potential to establish a grouping and classification of developmental toxicants. Our approach improves the robustness of phenotype scoring and reliability of assay performance and, hence, is anticipated to improve the predictivity of developmental toxicity screening using the zebrafish embryo.
Despite an extensive research on the molecular basis of epilepsy, the essential players in the epileptogenic process leading to epilepsy are not known. Gene expression analysis is one strategy to enhance our understanding of the genes contributing to the functional neuronal changes underlying epileptogenesis. In the present study, we used the novel MPSS (massively parallel signature sequencing) method for analysis of gene expression in the rat kindling model of temporal lobe epilepsy. Kindling by repeated electrical stimulation of the amygdala resulted in the differential expression of 264 genes in the hippocampus compared to sham controls. The most strongly induced gene was Homer 1A, an immediate early gene involved in the modulation of glutamate receptor function. The overexpression of Homer 1A in the hippocampus of kindled rats was confirmed by RT-PCR. In order to evaluate the functional implications of Homer 1A overexpression for kindling, we used transgenic mice that permanently overexpress Homer 1A. Immunohistochemical characterization of these mice showed a marked Homer 1A overexpression in glutamatergic neurons of the hippocampus. Kindling of Homer 1A overexpressing mice resulted in a retardation of seizure generalization compared to wild-type controls. The data demonstrate that kindling-induced epileptogenesis leads to a striking overexpression of Homer 1A in the hippocampus, which may represent an intrinsic antiepileptogenic and anticonvulsant mechanism in the course of epileptogenesis that counteracts progression of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.