The matrix elements of the translation operator with respect to a complete orthonormal basis set of the Hilbert space L2(R3) are given in closed form as functions of the displacement vector. The basis functions are composed of an exponential, a Laguerre polynomial, and a regular solid spherical harmonic. With this formalism, a function which is defined with respect to a certain origin, can be ’’shifted’’, i.e., expressed in terms of given functions which are defined with respect to another origin. In this paper we also demonstrate the feasibility of this method by applying it to problems that are of special interest in the theory of the electronic structure of molecules and solids. We present new one-center expansions for some exponential-type functions (ETF’s), and a closed-form expression for a multicenter integral over ETF’s is given and numerically tested.
A method for evaluating convolution integrals over rather general functions is suggested, based on the analytical evaluation of convolution integrals over functions BMν,L(r) = (2/π)1/2rL+νKν (r) YML(ϑ,φ), which are products of modified Bessel functions of the second kind Kν(r), regular solid spherical harmonics rLYML(ϑ,φ), and powers rν.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.