Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1900 exoplanets have now been discovered and confirmed, 1 none are still in the process of formation. Transition discs, protoplanetary disks with inner clearings 2-4 best explained by the influence of accreting planets 5 , are natural laboratories for the study of planet formation. Some transition discs show evidence for the presence of young planets in the form of disc asymmetries 6, 7 or infrared sources detected within their clearings, as in the case of LkCa 15. 8,9 Attempts to observe directly sig-Author Contributions: This work merged two independently acquired and analysed data sets. S.S. led preparation of the manuscript, the orbital fits, and the acquisition and analysis of the LBT data while K.B.F. led the acquisition and analysis of the MagAO data, development of the MagAO SDI pipeline, and drafted MagAO manuscript sections.
The Large Binocular Telescope Interferometer (LBTI) enables nulling interferometric observations across the N band (8 to 13 µm) to suppress a star's bright light and probe for faint circumstellar emission. We present and statistically analyze the results from the LBTI/HOSTS (Hunt for Observable Signatures of Terrestrial Systems) survey for exozodiacal dust. By comparing our measurements to model predictions based on the Solar zodiacal dust in the N band, we estimate a 1 σ median sensitivity of 23 zodis for early type stars and 48 zodis for Sun-like stars, where 1 zodi is the surface density of habitable zone (HZ) dust in the Solar system. Of the 38 stars observed, 10 show significant excess. A clear correlation of our detections with the presence of cold dust in the systems was found, but none with the stellar spectral type or age. The majority of Sun-like stars have relatively low HZ dust levels (best-fit median: 3 zodis, 1 σ upper limit: 9 zodis, 95% confidence: 27 zodis based on our N band measurements), while ∼20% are significantly more dusty. The Solar system's HZ dust content is consistent with being typical. Our median HZ dust level would not be a major limitation to the direct imaging search for Earth-like exoplanets, but more precise constraints are still required, in particular
The HOSTS (Hunt for Observable Signatures of Terrestrial Systems) survey searches for dust near the habitable zones (HZs) around nearby, bright main sequence stars. We use nulling interferometry in N band to suppress the bright stellar light and to probe for low levels of HZ dust around the 30 stars observed so far. Our overall detection rate is 18%, including four new detections, among which are the first three around Sun-like stars and the first two around stars without any previously known circumstellar dust. The inferred occurrence rates are comparable for early type and Sun-like stars, but decrease from 60 +16 −21 % for stars with previously detected cold dust to 8 +10 −3 % for stars without such excess, confirming earlier results at higher sensitivity. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal excess luminosity function, we put upper limits on the median HZ dust level of 13 zodis (95% confidence) for a sample of stars without cold dust and of 26 zodis when focussing on Sun-like stars without cold dust. However, our data suggest that a more complex luminosity function may be more appropriate. For stars without detectable LBTI excess, our upper limits are almost reduced by a factor of two, demonstrating the strength of LBTI target vetting for future exo-Earth imaging missions. Our statistics are so far limited and extending the survey is critical to inform the design of future exo-Earth imaging surveys.
The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for highangular resolution and high-contrast infrared imaging (1.5-13 µm). In this paper, we focus on the mid-infrared (8-13 µm) nulling mode and present its theory of operation, data reduction, and onsky performance as of the end of the commissioning phase in March 2015. With an interferometric baseline of 14.4 meters, the LBTI nuller is specifically tuned to resolve the habitable zone of nearby main-sequence stars, where warm exozodiacal dust emission peaks. Measuring the exozodi luminosity function of nearby main-sequence stars is a key milestone to prepare for future exoEarth direct imaging instruments. Thanks to recent progress in wavefront control and phase stabilization, as well as in data reduction techniques, the LBTI demonstrated in February 2015 a calibrated null accuracy of 0.05% over a three-hour long observing sequence on the bright nearby A3V star β Leo. This is equivalent to an exozodiacal disk density of 15 to 30 zodi for a Sun-like star located at 10 pc, depending on the adopted disk model. This result sets a new record for high-contrast mid-infrared interferometric imaging and opens a new window on the study of planetary systems.
Theoretical studies suggest that a giant planet around the young star MWC 758 could be responsible for driving the spiral features in its circumstellar disk. Here, we present a deep imaging campaign with the Large Binocular Telescope with the primary goal of imaging the predicted planet. We present images of the disk in two epochs in the L filter (3.8 µm) and a third epoch in the M filter (4.8 µm). The two prominent spiral arms are detected in each observation, which constitute the first images of the disk at M , and the deepest yet in L (∆L =12.1 exterior to the disk at 5σ significance). We report the detection of a S/N∼3.9 source near the end of the Sourthern arm, and, from the source's detection at a consistent position and brightness during multiple epochs, we establish a ∼90% confidence-level that the source is of astrophysical origin. We discuss the possibilities that this feature may be a) an unresolved disk feature, and b) a giant planet responsible for the spiral arms, with several arguments pointing in favor of the latter scenario. We present additional detection limits on companions exterior to the spiral arms, which suggest that a 4 M Jup planet exterior to the spiral arms could have escaped detection. Finally, we do not detect the companion candidate interior to the spiral arms reported recently by Reggiani et al. (2018), although forward modelling suggests that such a source would have likely been detected. Subject headings: Stars: pre-main sequence (MWC 758) -planets and satellites: formation -planets and satellites: detection -planet-disk interactions 1 Steward Observatory, University of Arizona 2 NASA NExSS Earths in Other Solar Systems Team 3 NASA Hubble Postdoctoral Fellow
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.