Thirty‐eight populations of woodlice (Oniscus asellus, Porcellio scaber) and millipedes (Julus scandinavius) from 28 differently metal‐polluted field sites were analysed for their 70‐kDa stress protein (hsp70) level. Although ANOVA revealed significant dependence of the hsp70 level on the concentrations of water‐soluble lead, cadmium and zinc and the soil pH, each of these parameters accounted for at most 18% of the intersite variability of the stress protein level only. A multivariate model based on multiple regression analysis explained more than 96% of hsp70 variance and revealed both the pollution history of a site (strong metal contamination for more than 70 years) and invertebrate species identity to act as the most important parameters. The model accounted for the observation that most of the populations from long‐term polluted sites exhibited comparatively low stress protein levels in response to their own (contaminated) habitats. In contrast, isopods (O. asellus) from a control site were not able to maintain a low hsp70 level when they were exposed to either an artificial metal cocktail or soil taken from one of the contaminated field sites. They did not acclimatize to the exposure conditions within 3 months. We propose that selection of insensitive phenotypes in long‐term polluted soils has taken place so as to minimize the stress protein level which, in turn, is indicative of high intracellular protein integrity. Long‐term selection for a high hsp70 level to compensate for adverse metal impact was not observed, which suggests that such a strategy may trade off against other fitness consequences. In this context, insensitivity to metal stress involved increased selectivity in food choice and reduced variability in stress response. Multiple regression models showed species‐specificity in those abiotic factors which determined (1) high hsp70 levels in sensitive populations as well as (2) low hsp70 levels in insensitive ones. Therefore, abiotic factors can be assigned to act as the main components of selection: lead and cadmium for J. scandinavius and O. asellus, zinc for P. scaber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.