A number of water-soluble cationic carriers was evaluated as transfectant. Almost all studied cationic methacrylate/methacrylamide polymers were able to condense the structure of plasmid DNA, yielding polymer/plasmid complexes (polyplexes) with a size of 0.1-0.3 micron and a slightly positive zeta-potential, which can be taken up by cells, e.g., via endocytosis. However, the transfection efficiency and the cytotoxicity of the polymers differed widely: the highest transfection efficiency and cytotoxicity were observed for poly[2-(dimethylamino)ethyl methacrylate], p(DMAEMA). Assuming that polyplexes enter cells via endocytosis, p(DMAEMA) apparently has advantageous properties to escape the endosome. A possible explanation is that, due to its average pK(a) value of 7.5, p(DMAEMA) is partially protonated at physiological pH and might behave as a proton sponge. This might cause a disruption of the endosome, which results in the release of both the polyplexes and cytotoxic endosomal/lysosomal enzymes into the cytosol. On the other hand, the analogues of p(DMAEMA) studied here have a higher average pKa value and have, consequently, a higher degree of protonation and a lower buffering capacity. This might be associated with a lower tendency to destabilize the endosome, resulting in both a lower transfection efficiency and a lower cytotoxicity. Furthermore, molecular modeling showed that, of all studied polymers, p(DMAEMA) has the lowest number of interactions with DNA. We therefore hypothesized that the superior transfection efficiency of p(DMAEMA) containing polyplexes can be ascribed to an intrinsic property of p(DMAEMA) to destabilize endosomes combined with an easy dissociation of the polyplex once present in the cytosol and/or the nucleus.
Nicotinamide N -methyltransferase (NNMT) catalyzes the methylation of nicotinamide to form N -methylnicotinamide. Overexpression of NNMT is associated with a variety of diseases, including a number of cancers and metabolic disorders, suggesting a role for NNMT as a potential therapeutic target. By structural modification of a lead NNMT inhibitor previously developed in our group, we prepared a diverse library of inhibitors to probe the different regions of the enzyme’s active site. This investigation revealed that incorporation of a naphthalene moiety, intended to bind the hydrophobic nicotinamide binding pocket via π–π stacking interactions, significantly increases the activity of bisubstrate-like NNMT inhibitors (half-maximal inhibitory concentration 1.41 μM). These findings are further supported by isothermal titration calorimetry binding assays as well as modeling studies. The most active NNMT inhibitor identified in the present study demonstrated a dose-dependent inhibitory effect on the cell proliferation of the HSC-2 human oral cancer cell line.
Inhibitors for galectin-1 and -3 were synthesized from thiodigalactoside and lactosamine by derivatization of the galactose C3. Introduction of 4-phenyl-1H-1,2,3-triazol-1-yl substituents at the thiodigalactoside C3 by CuAAC, targeting arginine-arene interactions, increased the affinity to 13 nM but yielded little selectivity. The bulkier 4-(4-phenoxyphenyl)-1H-1,2,3-triazol-1-yl substituent, however, increased the preference for galectin-3 over galectin-1 to more than 200-fold. Modeling showed more arginine-arene interactions for galectin-3 than for galectin-1. Introducing 4-phenoxyaryl groups on lactosamine had a similar effect.
The protein arginine N-methyltransferases (PRMTs) are a family of enzymes that function by specifically transferring a methyl group from the cofactor S-adenosyl-L-methionine (AdoMet) to the guanidine group of arginine residues in target proteins. The most notable is the PRMT-mediated methylation of arginine residues that are present in histone proteins which can lead to chromatin remodelling and influence gene transcription. A growing body of evidence now implicates dysregulated PRMT activity in a number of diseases including various forms of cancer. The development of PRMT inhibitors may therefore hold potential as a means of developing new therapeutics. We here report the synthesis and evaluation of a series of small molecule PRMT inhibitors designed to simultaneously occupy the binding sites of both the guanidino substrate and AdoMet cofactor. Potent inhibition and surprising selectivity were observed when testing these compounds against a panel of methyltransferases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.