The transport of RNA molecules from the nucleus to the cytoplasm is fundamental for gene expression. The different RNA species that are produced in the nucleus are exported through the nuclear pore complexes via mobile export receptors. Small RNAs (such as tRNAs and microRNAs) follow relatively simple export routes by binding directly to export receptors. Large RNAs (such as ribosomal RNAs and mRNAs) assemble into complicated ribonucleoprotein (RNP) particles and recruit their exporters via class-specific adaptor proteins. Export of mRNAs is unique as it is extensively coupled to transcription (in yeast) and splicing (in metazoa). Understanding the mechanisms that connect RNP formation with export is a major challenge in the field.
We report the characterization of early pre-ribosomal particles. Twelve TAP-tagged components each showed nucleolar localization, sedimented at approximately 90S on sucrose gradients, and coprecipitated both the 35S pre-rRNA and the U3 snoRNA. Thirty-five non-ribosomal proteins were coprecipitated, including proteins associated with U3 (Nop56p, Nop58p, Sof1p, Rrp9, Dhr1p, Imp3p, Imp4p, and Mpp10p) and other factors required for 18S rRNA synthesis (Nop14p, Bms1p, and Krr1p). Mutations in components of the 90S pre-ribosomes impaired 40S subunit assembly and export. Strikingly, few components of recently characterized pre-60S ribosomes were identified in the 90S pre-ribosomes. We conclude that the 40S synthesis machinery predominately associates with the 35S pre-rRNA factors, whereas factors required for 60S subunit synthesis largely bind later, showing an unexpected dichotomy in binding.
In yeast, the TREX complex contains the THO transcription elongation complex, which functions in direct cotranscriptional recruitment of the mRNA export proteins Sub2 and Yra1 to nascent transcripts. Here we report the identification of the human THO complex and show that it associates with spliced mRNA, but not with unspliced pre-mRNA in vitro. Transcription is not required for this recruitment. We also show that the human THO complex colocalizes with splicing factors in nuclear speckle domains in vivo. Considering that splicing occurs cotranscriptionally in humans, our data indicate that recruitment of the human TREX complex to spliced mRNA is not directly coupled to transcription, but is instead coupled to transcription indirectly through splicing.
Human TAP is an orthologue of the yeast mRNA export factor Mex67p. In mammalian cells, TAP has a preferential intranuclear localization, but can also be detected at the nuclear pores and shuttles between the nucleus and the cytoplasm. TAP directly associates with mRNA in vivo, as it can be UV-crosslinked to poly(A) ⍣ RNA in HeLa cells. Both the FG-repeat domain of nucleoporin CAN/Nup214 and a novel human 15 kDa protein (p15) with homology to NTF2 (a nuclear transport factor which associates with RanGDP), directly bind to TAP. When green fluorescent protein (GFP)-tagged TAP and p15 are expressed in yeast, they localize to the nuclear pores. Strikingly, co-expression of human TAP and p15 restores growth of the otherwise lethal mex67::HIS3/mtr2::HIS3 double knockout strain. Thus, the human TAP-p15 complex can functionally replace the Mex67p-Mtr2p complex in yeast and thus performs a conserved role in nuclear mRNA export.
An essential cellular factor for nuclear mRNA export called Mex67p which has homologous proteins in human and Caenorhabditis elegans was identified through its genetic interaction with nucleoporin Nup85p. In the thermosensitive mex67-5 mutant, poly(A)+ RNA accumulates in intranuclear foci shortly after shift to the restrictive temperature, but NLS-mediated nuclear protein import is not inhibited. In vivo, Mex67p tagged with green fluorescent protein (GFP) is found at the nuclear pores, but mutant mex67-5-GFP accumulates in the cytoplasm. Upon purification of poly(A)+ RNA derived from of UV-irradiated yeast cells, Mex67p, but not nucleoporins Nup85p and Nup57p, was crosslinked to mRNA. In a two-hybrid screen, a putative RNA-binding protein with RNP consensus motifs was found to interact with the Mex67p carboxy-terminal domain. Thus, Mex67p is likely to participate directly in the export of mRNA from the nucleus to the cytoplasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.