Over the last decade, the use of chirped fibre Bragg gratings (CFBGs) in detonation velocity experiments has been steadily increasing. In this paper, we show how CFBG design parameters—chirp-rate, reflectivity and apodisation—affect linearity in detonation velocity tests. It is found that the optimal CFBG detonation velocity probe should have a high chirp-rate, a low reflectivity and no apodisation. As a further demonstration of these findings, we measure detonation velocity with a 24 cm optimised CFBG; the longest CFBG test of this kind so far.
In this paper, a simple detonation velocity measurement scheme is presented, which exploits the length-dependent amplified spontaneous emission (ASE) power emitted by off-the-shelf Er-doped fibres. This measurement scheme is first calibrated using cutback tests, so that minimal processing is required between data collection and velocity readout. We then demonstrate the use of this method in an explosive cylinder test and achieve a spatial resolution of approximately ±2 mm, owing to its implementation in a helical geometry. Alongside the standard Er fibres, a specially made, high-concentration Er/Yb-doped fibre is also calibrated, which demonstrates a potential spatial resolution approaching ±20 μ m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.