As part of the development of a model for predicting fuel loading reductions by and intensity histories of fires burning in large woody natural fuels, it was necessary to develop separate models for the processes of ignition and rate of burning of individual fuel elements. This paper describes the derivation of predictive equations for ignition delay time and burning rate (from diameter reduction rate) of large woody natural fuels in a fire environment. The method consists of deriving approximate functional forms using fuel component properties and a measurable ''fire environment temperature'' and then fitting these forms to data taken in laboratory fires using a large propane burner. The equations describe the calibration data with precision adequate for the purpose for which they were designed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.