We present a quantum synthesis algorithm designed to produce short circuits and to scale well in practice. The main contribution is a novel representation of circuits able to encode placement and topology using generic "gates", which allows the QFAST algorithm to replace expensive searches over circuit structures with few steps of numerical optimization. When compared against optimal depth, search based state-of-the-art techniques, QFAST produces comparable results: 1.19× longer circuits up to four qubits, with an increase in compilation speed of 3.6×. In addition, QFAST scales up to seven qubits. When compared with the state-of-the-art "rule" based decomposition techniques in Qiskit, QFAST produces circuits shorter by up to two orders of magnitude (331×), albeit 5.6× slower. We also demonstrate the composability with other techniques and the tunability of our formulation in terms of circuit depth and running time.
Dynamic simulation of materials is a promising application for near-term quantum computers. Current algorithms for Hamiltonian simulation, however, produce circuits that grow in depth with increasing simulation time, limiting feasible simulations to short-time dynamics. Here, we present a method for generating circuits that are constant in depth with increasing simulation time for a specific subset of one-dimensional (1D) materials Hamiltonians, thereby enabling simulations out to arbitrarily long times. Furthermore, by removing the effective limit on the number of feasibly simulatable time-steps, the constant-depth circuits enable Trotter error to be made negligibly small by allowing simulations to be broken into arbitrarily many time-steps. For an N-spin system, the constant-depth circuit contains only $\mathcal {O}(N^{2})$
O
(
N
2
)
CNOT gates. Such compact circuits enable us to successfully execute long-time dynamic simulation of ubiquitous models, such as the transverse field Ising and XY models, on current quantum hardware for systems of up to 5 qubits without the need for complex error mitigation techniques. Aside from enabling long-time dynamic simulations with minimal Trotter error for a specific subset of 1D Hamiltonians, our constant-depth circuits can advance materials simulations on quantum computers more broadly in a number of indirect ways.
The success of the current generation of Noisy Intermediate-Scale Quantum (NISQ) hardware shows that quantum hardware may be able to tackle complex problems even without error correction. One outstanding issue is that of coherent errors arising from the increased complexity of these devices. These errors can accumulate through a circuit, making their impact on algorithms hard to predict and mitigate. Iterative algorithms like Quantum Imaginary Time Evolution are susceptible to these errors. This article presents the combination of both noise tailoring using Randomized Compiling and error mitigation with a purification. We also show that Cycle Benchmarking gives an estimate of the reliability of the purification. We apply this method to the Quantum Imaginary Time Evolution of a Transverse Field Ising Model and report an energy estimation and a ground state infidelity both below 1%. Our methodology is general and can be used for other algorithms and platforms. We show how combining noise tailoring and error mitigation will push forward the performance of NISQ devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.