Data from many laboratory and clinical investigations indicate that CD34+ cells comprise approximately 1% of human bone marrow (BM) mononuclear cells, including the progenitor cells of all the lymphohematopoietic lineages and lymphohematopoietic stem cells (stem cells). Because stem cells are an important but rare cell type in the CD34+ cell population, investigators have subdivided the CD34+ cell population to further enrich stem cells. The CD34+/CD38-cell subset comprises less than 10% of human CD34+ adult BM cells (equivalent to < 0.1% of marrow mononuclear cells), lacks lineage (lin) antigens, contains cells with in vitro replating capacity, and is predicted to be highly enriched for stem cells. The present investigation tested whether the CD34+/CD38-subset of adult human marrow generates human hematopoiesis after transfer to preimmune fetal sheep. CD34+/ CD38- cells purified from marrow using immunomagnetic microspheres or fluorescence-activated cell sorting generated easily detectable, long- term, multilineage human hematopoiesis in the human-fetal sheep in vivo model. In contrast, transfer of CD34+/CD38+ cells to preimmune fetal sheep generated only short-term human hematopoiesis, possibly suggesting that the CD34+/CD38+ cell population contains relatively early multipotent hematopoletic progenitor cells, but not stem cells. This work extends the prior in vitro evidence that the earliest cells in fetal and adult human marrow lack CD38 expression. In summary, the CD34+/ CD38-cell population has a high capacity for long-term multilineage hematopoietic engraftment, suggesting the presence of stem cells in this minor adult human marrow cell subset.
In the course of ontogeny, the homing site for the hematopoietic stem cells (HSC) moves with certain predictability from the yolk sac to the liver/spleen and then to the marrow. The pattern of this migration has thus far been established mostly on a morphologic basis. To delineate further the course of this migration and to gain insight into its possible mechanism, we used in utero transplantation of allogeneic or xenogeneic HSC in preimmune sheep fetuses. Sex chromosome, type of hemoglobin, and species-specific surface markers were used to follow the path of transplanted cells in the fetus. Before the development of the bone marrow, transplanted HSC (liver- or marrow-derived) homed exclusively to the liver/spleen. With the development of marrow, around day 60 of gestation (term, 145 days), homing occurred also in the nascent marrow and by day 80 transplanted cells homed exclusively to the marrow. This suggests that there may be a hierarchy in homing sites, with those of the marrow having higher affinity than those of liver/spleen. Interestingly, despite a change in homing that was followed by the expansion of the marrow compartment of HSC (ie, HSC proliferation), these cells did not participate actively in blood cell formation during most of the prenatal period. Liver remained the major hematopoietic organ throughout the gestation. It was only during the perinatal period that this organ assumed the function of hematopoiesis from the liver. This lack of expression of HSC in fetal marrow can possibly be attributable to the immaturity of marrow stroma required for differentiation and maturation of progenitors and the orderly egress of mature cells into the blood stream. The availability of this model allows us to begin studies in the molecular mechanism of stem cell homing in vivo during ontogeny.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.