Self-monitoring of blood glucose was described as one of the most important advancements in diabetes management since the invention of insulin in 1920. Recent advances in glucose sensor technology for measuring interstitial glucose concentrations have challenged the dominance of glucose meters in diabetes management, while raising questions about the relationships between interstitial and blood glucose levels. This article will review the differences between interstitial and blood glucose and some of the challenges in measuring interstitial glucose levels accurately.
Objective
Severe hypoglycemia (SH) and diabetic ketoacidosis (DKA) are common serious acute complications of type 1 diabetes (T1D). The aim of this study was to determine the frequency of SH and DKA and identify factors related to their occurrence in the T1D Exchange pediatric and young adult cohort.
Research Design and Methods
The analysis included 13,487 participants in the T1D Exchange clinic registry aged 2-<26 years with T1D ≥2 years. Separate logistic regression models were used to evaluate the association of baseline demographic and clinical factors with the occurrence of SH or DKA in the prior 12 months.
Results
Non-White race, no private health insurance and lower household income were associated with higher frequencies of both SH and DKA (p<0.001). SH frequency was highest in children <6 years old (p=0.005), but across the age range, SH was not associated with HbA1c levels after controlling for other factors (p=0.72). DKA frequency was highest in adolescents (p<0.001) and associated with higher HbA1c (p<0.001).
Conclusions
Our data show that poor glycemic control increases the risk of DKA but does not protect against severe hypoglycemia in youth and young adults with type 1 diabetes. The high frequencies of SH and DKA observed in disadvantaged minorities with T1D highlight the need for targeted interventions and new treatment paradigms for patients in these high risk groups.
Physical exercise is an important component in the management of type 1 diabetes across the lifespan. Yet, acute exercise increases the risk of dysglycaemia, and the direction of glycaemic excursions depends, to some extent, on the intensity and duration of the type of exercise. Understandably, fear of hypoglycaemia is one of the strongest barriers to incorporating exercise into daily life. Risk of hypoglycaemia during and after exercise can be lowered when insulin-dose adjustments are made and/or additional carbohydrates are consumed. Glycaemic management during exercise has been made easier with continuous glucose monitoring (CGM) and intermittently scanned continuous glucose monitoring (isCGM) systems; however, because of the complexity of CGM and isCGM systems, both individuals with type 1 diabetes and their healthcare professionals may struggle with the interpretation of given information to maximise the technological potential for effective use around exercise (i.e. before, during and after). This position statement highlights the recent advancements in CGM and isCGM technology, with a focus on the evidence base for their efficacy to sense glucose around exercise and adaptations in the use of these emerging tools, and updates the guidance for exercise in adults, children and adolescents with type 1 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.