By the start of 2020, the daily and business world had to undergo a radical change with the widespread pandemic known as COVID-19. Many people had to replace their everyday purchase medium to meet the enforced restrictions, and local businesses had to adjust their operations to accommodate the negative impacts brought upon by the disease’s rapid spread. Groceries and FMCG sub-sectors of the retail industry were forced to adapt to consumers’ stockpiling and panic-buying behaviors. We studied the impact of similar purchase attitudes for various product groups during the COVID-19 and probed the differences between sales of online and physical markets. Initially, a cluster analysis identifies which product groups were affected by similar shopping behaviors during the pandemic. Subsequently, the impact of the number of COVID cases on sales levels was measured using stepwise, lasso, and the best subset models. All the models were applied to both physical and online market datasets. The results showed a significant shift from the physical to the online markets during the pandemic. These findings can provide an essential guideline to retail managers in adapting to the new world.
2020 yılının başında, COVID-19 olarak bilinen pandeminin yaygınlaşmasıyla birlikte, günlük yaşam ve iş dünyası köklü bir değişimden geçmek zorunda kalmıştır. Bu bağlamda, birçok kişi, uygulanan kısıtlamaları karşılamak için günlük satın alma araçlarını değiştirmiş ve yerel işletmeler, hastalığın hızlı yayılmasının getirdiği olumsuz etkilere uyum sağlamak için operasyonlarını ayarlamıştır. Perakende sektörü, tüketicilerin stokçuluk ve panik satın alma davranışlarına uyum sağlamak gereksinimi duymuştur. Bu çalışmada, COVID-19 pandemi döneminde çeşitli ürün grupları için satın alma tutumlarının etkisi ve çevrimiçi ve fiziksel pazarlardaki satışlar arasındaki farklar incelenmiştir. İlk adım olarak, pandemi sırasında benzer alışveriş davranışlarından hangi ürün gruplarının etkilendiğini belirleyen bir küme analizi yapılmıştır. İkinci aşamada, her bir küme için, Ardışık(Stepwise), Lasso ve En İyi Alt Küme(Best Subset) regresyon tahmin modelleri kullanılarak, COVID-19 vaka sayısının satış seviyeleri üzerindeki etkisi incelenmiş ve tüm modeller hem fiziksel hem de çevrimiçi pazar veri setlerine uygulanmıştır. Sonuçlar, pandemi sırasında fiziksel pazarlardan çevrimiçi pazarlara önemli bir geçiş olduğunu göstermiştir. Elde edilen bulguların, perakende sektörü yöneticilerine yeni dünyaya uyum sağlama yolunda önemli bir yol gösterici olması beklenmektedir.
This chapter aims to investigate the efficiency of nations in their struggle against the COVID-19 analysing data from June and December 2020 with a novel three-stage methodology. In the first stage, 107 nations were clustered into highly competitive, competitive, and non-competitive countries using their Global Competitiveness Index scores (World Economic Forum) to evaluate comparable countries in the second stage with the Data Envelopment Analysis. In the third stage, the relationship between countries' efficiency and performance in 66 variables published in the United Nations Human Development Report was investigated along with the long-debated aspect of a nation's political governance regime using Tobit regression. The worst performing highly competitive nations were USA and UK, competitive nations were Chile and Peru, and non-competitive nations were Brazil and Mozambique. Air pollution, international inbound tourists, urban population significantly reduced while domestic credit and gross national income per capita significantly increased efficiency, but the political regime did not affect it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.