PurposeDuchenne muscular dystrophy (DMD) is an X-linked recessive pediatric disorder that ultimately leads to progressive muscle degeneration. It has been known that cell-based therapies were used to promote muscle regeneration. The main purpose of this study was to investigate the effects of allogeneic Wharton jelly-derived mesenchymal stem cells therapy in Duchenne muscular dystrophy.Patients and methodsFour ambulatory and five nonambulatory male patients were assessed as having acceptance criteria. Gene expression and immunohistochemical analysis were performed for dystrophin gene expression. The fluorescent in situ hybridization method was used for detection of chimerism and donor–recipient compatibility. Complement dependent lymphocytotoxic crossmatch test and detection of panel reactive antigen were performed. All patients were treated with 2 × 106 cells/kg dose of allogeneic Wharton jelly-derived mesenchymal stem cells via intra-arterial and intramuscular administration. Stability was maintained in patient follow-up tests, which are respiratory capacity tests, cardiac measurements, and muscle strength tests.ResultsThe vastus intermedius muscle was observed in one patient with MRI. Chimerism was detected by fluorescent in situ hybridization and mean gene expression was increased to 3.3-fold. An increase in muscle strength measurements and pulmonary function tests was detected. Additionally, we observed two of nine patients with positive panel reactive antigen result.ConclusionAll our procedures are well tolerated, and we have not seen any application-related complications so far. Our main purpose of this study was to investigate the effects of allogeneic mesenchymal stem cell therapy and determine its suitability and safety as a form of treatment in this untreatable disorder.
Background: Friedreich's ataxia is a progressive degenerative disorder caused by deficiency of the frataxin protein.Expanded GAA repeats in intron 1 of the FXN gene lead to its heterochromatinization and transcriptional silencing. Strategies being trialed to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. It has been shown that mesenchymal stem cell (MSC)-derived factors can restore cellular homeostasis and function to frataxin deficient cells. Case Summary: Here, we report three FRDA cases treated with four consecutive allogeneic transplantations of umbilical cord-derived MSCs with 30 days interval, upon per patient regulatory approvals for advanced cellular therapy. Outcome Measures: The cases were followed up after the treatment in means of the therapeutic effect of the cellular treatment by attenuating the neurological findings and gene expression parameters. Conclusions: Closely followed promising safety and efficacy outcomes demonstrated that the MSC treatment for FRDA might positively affect the clinical results caused by the defect in this genetic-based disease.
Amaç: RNA Dizileme teknolojisi gen anlatım farklılıkları ve kodlayan bölgedeki varyasyonlar, kodlama yapmayan küçük RNAların anlatımları ve gen füzyonlarının belirlenmesi ile bu farklılıkların nedenlerini sunabilmektedir. Ancak bu kadar enformatik bilgiler sunabilen bu teknolojinin analizlerinin yapılması ve yorumlanması oldukça zorludur. T-hücreli akut lenfoblastik lösemi (T-ALL) de prognostik öneme sahip ve hastalığın takibinde kullanılabilecek güvenilir bir genetik belirteç bulunmamakla birlikte, doğrudan tedavi protokolünü ve tedavide yararlanılacak yeni hedef proteinleri belirlemede esas olacak moleküler alt yapı ve sınıflandırma da bilinmemektedir. Gereç ve Yöntem: Biz de bu çalışmamızda, TALL gibi karmaşık bir genomik arka plana sahip lösemi hücrelerinde RNA-dizileme için en uygun enformatik iş akış algoritmasını oluşturmayı amaçladık. Bu çalışmada RNA dizileme ile Jurkat ve Molt 4 hücre hatları dizilenmiştir. Doğrulama ve karşılaştırma amacıyla açık veri bankalarından elde edilen sağlıklı timosit alt grupları ve TALL hasta (n=12) örnekleri (GSE48173) kullanılmıştır. Bulgular: Açık erişimli veri araçları ile gerçekleştirdiğimiz enformatik analizlerde doku spesifik alternatif kırpılma ürünlerinin kantitatif tayinini, spesifik gen varyasyonlarını ve global gen anlatım düzeylerini başarılı bir şekilde tespit ettik ve TALL hasta verisinde aynı yaklaşımları kullanarak doğrulama yaptık. Sonuç: Çalışmamızın sonucunda lösemi hastalarının veri analizinde kullanılabilecek uygun araçlar ve algoritma belirlenmiştir.
Purpose To evaluate the expression of G-protein coupled estrogen receptor (GPER1), aromatase, estrogen receptor α (ERα), estrogen receptor β (ERβ), pituitary tumor transforming gene (PTTG), and fibroblast growth factor 2 (FGF2) in GH-secreting and non-functioning adenomas (NFA). Methods Thirty patients with acromegaly and 27 patients with NFA were included. Gene expression was determined via quantitative reverse transcription polymerase chain reaction (QRT-PCR). Protein expression was determined via immunohistochemistry. Results There was no difference, in terms of gene expression of aromatase, ERα, PTTG, and FGF2 between the two groups (p>0.05 for all). ERβ gene expression was higher and GPER1 gene expression was lower in GH-secreting adenomas than NFAs (p<0.05 for all). Aromatase and ERβ protein expression was higher in GH-secreting adenomas than NFAs (p=0.01). None of the tumors expressed ERα. GPER1 expression was detected in 62.2% of the GH-secreting adenomas and 45% of NFAs. There was no difference in terms of GPER1, PTTG, FGF2 H scores between the two groups (p>0.05 for all). GPER1 gene expression was positively correlated to ERα, ERβ, PTTG, and FGF2 gene expression (p<0.05 for all). There was a positive correlation between aromatase and GPER1 protein expression (r=0.31; p=0.04). Conclusions GPER1 is expressed at both gene and protein level in a substantial portion of GH-secreting adenomas and NFAs. The finding of a positive correlation between GPER1 and ERα, ERβ, PTTG, and FGF2 gene expression and aromatase and GPER1 protein expression suggests GPER1 along with aromatase and classical ERs might mediate the effects of estrogen through upregulation of PTTG and FGF2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.