Background
Accumulating evidence suggests that the intestinal microbiome may dramatically affect the outcomes of hematopoietic stem cell transplant (HSCT) recipients. Providing 16S ribosomal RNA based microbiome characterization in a clinically actionable time frame is currently problematic. Thus, determination of microbial metabolites as surrogates for microbiome composition could offer practical biomarkers.
Methods
Longitudinal fecal specimens (n = 451) were collected from 44 patients before HSCT through 100 days after transplantation, as well as 1-time samples from healthy volunteers (n = 18) as controls. Microbiota composition was determined using 16S ribosomal RNA V4 sequencing. Fecal indole and butyrate levels were determined using liquid chromatography tandem mass spectrometry.
Results
Among HSCT recipients, both fecal indole and butyrate levels correlated with the Shannon diversity index at baseline (P = .02 and P = .002, respectively) and directly after transplantation (P = .006 and P < .001, respectively). Samples with high butyrate levels were enriched for Clostridiales, whereas samples containing high indole were also enriched for Bacteroidales. A lower Shannon diversity index at the time of engraftment was associated with increased incidence of acute intestinal graft-vs-host disease (iGVHD) (P = .02) and transplant-related deaths (P = .03). Although fecal metabolites were not associated with acute iGVHD or overall survival, patients contracting bloodstream infections within 30 days after transplantation had significantly lower levels of fecal butyrate (P = .03).
Conclusions
Longitudinal analysis of fecal microbiome and metabolites after HSCT identified butyrate and indole as potential surrogate markers for microbial diversity and specific taxa. Further studies are needed to ascertain whether fecal metabolites can be used as biomarkers of acute iGVHD or bacteremia after HSCT.
Pneumocandins are lipohexapeptides of the echinocandin family that inhibit fungal 1,3-β-glucan synthase. Most of the pathway steps have been identified previously. However, the lipoinitiation reaction has not yet been experimentally verified. Herein, we investigate the lipoinitiation step of pneumocandin biosynthesis in Glarea lozoyensis and demonstrate that the gene product, GLligase, catalyzes this step. Disruption of GLHYD, a gene encoding a putative type II thioesterase and sitting upstream of the pneumocandin acyl side chain synthase gene, GLPKS4, revealed that GLHYD was necessary for optimal function of GLPKS4 and to attain normal levels of pneumocandin production. Double disruption of GLHYD and GLPKS4 did not affect residual function of the GLligase or GLNRPS4. Mutasynthesis experiments with a gene disruption mutant of GLPKS4 afforded us an opportunity to test the substrate specificity of GLligase in the absence of its native polyketide side chain to diversify pneumocandins with substituted side chains. Feeding alternative side chain precursors yielded acrophiarin and four new pneumocandin congeners with straight C14, C15, and C16 side chains. A comprehensive biological evaluation showed that one compound, pneumocandin I (5), has elevated antifungal activity and similar hemolytic activity compared to pneumocandin B0, the starting molecule for caspofungin. This study demonstrates that the lipoinitiation mechanism in pneumocandin biosynthesis involves interaction among a highly reducing PKS, a putative type II thioesterase, and an acyl AMP-ligase. A comparison of the SAR among pneumocandins with different-length acyl side chains demonstrated the potential for using GLligase for future engineering of new echinocandin analogues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.