The synthesis and characterization of perylenediimide polyisocyanides is reported. In addition to short oligomers, our synthetic approach results in the formation of extremely long, well-defined, and rigid perylenediimide polymers. Ordering and close-packing of the chromophores in these long polymers is guaranteed by attachment to a polyisocyanide backbone with amino acid side chains. Hydrogen bonding interactions between those groups stabilize and rigidify the helical polymer structure. The rodlike nature of the synthesized long perylenediimide pendant polyisocyanides as well as the helical arrangement of the chromophores is demonstrated by means of atomic force microscopy. Remarkably, polymer fibers up to 1 µm in length have been visualized, containing several thousands of perylenediimide molecules. Circular dichroism spectroscopy reveals the chiral organization of the chromophore units in the polymer, whereas absorption and emission measurements prove the occurrence of excited-state interactions between those moieties due to the close packing of the chromophore groups. However, an intricate optical behavior is encountered in bulk as a result of the coexistence of short oligomers and long polymers of perylenediimide, a situation subsequently uncovered by means of single-molecule experiments. Individual long helical perylenediimide polyisocyanides exhibit a typical red-shifted fluorescence spectrum, which, together with depolarized emission continuously decreasing in time, demonstrate that fluorescence arises from multiple excimer-like species in the polymer. Upon continuous irradiation of these long polymers, a fast decay in fluorescence lifetime is observed, a situation explained by photoinduced creation of quenching sites. Radical/ion formation by intramolecular electron transfer between close-by perylenediimide moieties is the most probable mechanism for this process. Appropriate control of the electron-transfer process might open the possibility of applying these polymers as perylenediimidebased supramolecular nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.