High pressure liquid chromatography profiles of barley leaf epidermal soluble and cell wall-bound phenolics were analyzed in response to challenge with the fungal pathogen Erysiphe graminis f. sp. hordei. Only one soluble phenolic was found to accumulate differentially in a broad spectrum resistance reaction controlled by mlo resistance alleles in comparison to susceptible near isogenic Mlo lines. Structural analysis identified this compound as a novel phenolic conjugate, p-coumaroyl-hydroxyagmatine (p-CHA). p-CHA but not the nonhydroxylated derivative p-coumaroylagmatine exhibited antifungal activity both in vitro and in vivo. The accumulation of p-CHA in epidermal tissue correlated tightly with fungal penetration attempts of attacked host cells. Furthermore, upon penetration, epidermal cell wallbound phenolics became resistant to saponification at sites of attempted fungal ingress (papilla), indicating a change in, or the addition of, different chemical bonding types. The switch in saponification sensitivity occurred at least 2 h earlier in the mlo-incompatible than in the Mlo-compatible interaction. Our results suggest that p-CHA and the speed of papillae compaction play important roles in non-racespecific powdery mildew defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.