The behavioral profiles of five clinically used selective serotonin reuptake inhibitors (SSRIs) citalopram, paroxetine, sertraline, fluvoxamine and fluoxetine, have been compared in animal models of antidepressant (mouse forced swim test), anxiolytic (exploration of black and white test box and foot-shock-induced ultrasonic vocalization in the rat) and antiaggressive (isolation-induced aggressive behavior in the mouse) activity. the results are discussed in relation to receptor binding data from the literature. Furthermore, affinities for the sigma 1 and sigma 2 binding sites are presented. Citalopram reversed the immobility induced by forced swimming with a potency similar to that of imipramine. Paroxetine, fluvoxamine and fluoxetine reversed swim-induced immobility less potently and with a maximum of 40-50% reversal. Citalopram produced a mixed anxiogenic-/anxiolytic-like response in rats tested in the two-compartment black and white box. Paroxetine induced an anxiogenic-like response at low doses and the other SSRIs were without major effects. Citalopram and paroxetine inhibited footshock-induced ultrasonic vocalization with high potencies. The dose-response curve was biphasic for citalopram with a maximum of 64% inhibition. Sertraline and fluvoxamine inhibited the vocalization less potently, and fluoxetine induced a weak inhibitory effect corresponding to a maximum of 32%. Sertraline, fluvoxamine and fluoxetine inhibited isolation-induced aggressive behavior, whereas citalopram and paroxetine were inactive. Both 5-HT1 and 5-HT2 receptors are involved, and there was a functional interaction between 5-HT1A and 5-HT2A or 5-HT2C receptors, as ritanserin potentiated the antiaggressive effect of 1,5-HTP as well as that of 8-OH-DPAT.
A series of 4-(1H-indol-3-yl)-1-butyl-substituted 4-phenylpiperidines, 4-phenyl-1,2,3,6-tetrahydropyridines, and 4-phenylpiperazines was synthesized. The phenyl group was optionally substituted with 4-fluoro or 2-methoxy substituents. High affinity for both sigma 1 and sigma 2 binding sites was achieved with these compounds. Additionally, these compounds had relatively high affinity for serotonin 5-HT1A and 5-HT2A, dopamine D2, and adrenergic alpha 1 receptors. Introduction of a 4-fluorophenyl substituent at the indole nitrogen atom rendered very selective sigma 2 ligands with subnanomolar affinity for the sigma 2 binding site. The prototype of such a compound was 1-(4-fluorophenyl)-3-[4-[4-(4-fluorophenyl)-1-piperidinyl]-1-butyl]-1H- indole, 11a (code no. Lu 29-253). This compound had the following binding affinities: IC50 (sigma 1) = 16 nM, IC50 (sigma 2) = 0.27 nM, IC50 (5-HT1A) = 22,000 nM, IC50 (5-HT2A) = 270 nM, IC50 (D2) = 4200 nM, IC50 (alpha 1) = 220 nM. Spiro-joining of the phenyl and the piperidine rings into a spiro[isobenzofuran-1(3H),4'-piperdine] ring system resulted in even more selective compounds. Variations of the 1-substituent at the indole and of the chain length of the alkylene spacer group were studied. The optimal compound was the spiro analogue of compound 11a. This compound is 1'-[4-[1-(4-fluorophenyl)-1H-indol-3-yl]-1-butyl]spiro[isobenzofuran- 1(3H),4'-piperidine], 14f (code no. Lu 28-179), with the binding affinities: IC50 (sigma 1) = 17 nM, IC50 (sigma 2) = 0.12 nM, IC50 (5-HT1A) = 21,000 nM, IC50 (5-HT2A) = 2000 nM, IC50 (D2) = 800 nM, IC50 (alpha 1) = 330 nM. However, the most selective sigma 2 versus sigma 1 ligand was the tropane derivative 1-(4-fluorophenyl)-3-[4-[3-(4-fluorophenyl)-8-azabicyclo[3.2.1]oct-2- en-8-yl]-1-butyl]-1H-indole, 15a. This compound had the following binding affinities: IC50 (sigma 1) = 1200 nM, IC50 (sigma 2) = 2.5 nM. Potent anxiolytic activity in the black/white box exploration test in rats was found with the two most prominent sigma 2 ligands Lu 29-253 and Lu 28-179. Good penetration into the CNS was documented both after subcutaneous and peroral administration of Lu 28-179 by ex vivo binding studies. Long duration of action was demonstrated both in ex vivo binding (T1/2 approximately 20 h) and in the black/white box exploration test.
A series of 2- or 8-trifluoromethylsulfonyloxy (TfO) and 2- or 8-methylsulfonyloxy (MsO) 11-piperazinyldibenzodiazepines, -oxazepines, and -thiazepines were synthesized and evaluated in pharmacological models for their potential clozapine-like properties. In receptor binding assays, the 2-TfO analogues (18a, GMC2-83; 24, GMC3-06; and previously reported GMC1-169, 9a) of the dibenzazepines have profiles comparable to that of clozapine, acting on a variety of CNS receptors except they lack M1 receptor affinity. Introduction of 2-TfO to clozapine leads to compound 9e (GMC61-39) which has a similar binding profile as that of clozapine including having M1 receptor affinity. Interestingly, the MsO analogues, as well as the 8-TfO analogues, have no or weak dopaminergic and serotonergic affinities, but all 8-sulfonyloxy analogues do have M1 affinities. In behavioral studies performed to indicate the potential antipsychotic efficacy and the propensity to induce EPS, 2-TfO analogues blocked effectively the apomorphine-induced climbing in mice in a dose-dependent manner with ED50 values (mg/kg) of 2.1 sc for 9a, 1.3 po for 18a, 2.6 sc for 24, and 8.2 sc for 9e. On the other hand, they showed a clear dose separation with regard to their ED50 values (mg/kg) for indicating catalepsy in rats (>44 sc for 9a, 28 po for 18a, 30 sc for 24, and >50 sc for 9e, respectively), thus implicating a more favorable therapeutic ratio (K/A, ED50 climbing/ED50 catalepsy) in comparison with typical neuroleptics such as haloperidol and isoclozapine. Furthermore, compound 18a was also demonstrated to be an orally potent DA antagonist with an ED50 value of 0.7 mg/kg po in the ex vivo L-DOPA accumulation model. The present study contributes to the SAR of 11-piperazinyldibenzazepines, and the 2-TfO analogues of 11-piperazinyldibenzazepines are promising candidates as clozapine-like atypical antipsychotics with low propensity to induce EPS.
is a new neuroleptic with a very high selectivity for dopamine (DA) neurones in the ventral tegmental area compared to DA neurones in substantis nigra pars compacta (Skarsfeldt, T., and Perregaard, J. Eur. J. Pharmacol. 182:613-614, 1990). Neurochemical and behavioural effects of sertindole have been investigated in comparison with the classical neuroleptics haloperidol and fluphenazine and the atypical neuroleptic clozapine. In vitro sertindole has high affinity for serotonin S, (5-HT2) receptors, DA D-2 receptors, and aladrenoceptors; moderate affinity for DA D-l receptors; low affinity for a,-adrenoceptors, histamine H, receptors and sigma receptors; and no affinity for 5-HTlA, muscarine cholinergic receptors, and p-adrenoceptors. The in vivo pharmacology is atypical, i.e., a remarkably weak or no effect in acute tests for DA antagonism, and the cataleptogenic potential is very low. Sertindole shows a very potent and long-acting antagonism at central as well as peripheral 5-HTz receptors. The antagonistic effect at peripheral a,-adrenoceptors is relatively weak in comparison with the 5-HTz antagonistic potency in vivo and in vitro. Sertindole shows no anticholinergic effects. In conclusion the pharmacological profile suggests that sertindole is an atypical neuroleptic compound with a low potential for extrapyramidal, autonomic, and anticholinergic side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.