During maximal contractions, the sum of forces exerted by homonymous muscles unilaterally is typically larger than the sum of forces exerted by the same muscles bilaterally. This phenomenon is known as the bilateral deficit (BLD), and it is suggested that this deficit is due to neural inhibition. It remains unclear, however, whether such inhibition is mediated by supraspinal mechanisms or by reflex pathways at the level of spinal cord. To further study the origin of likely neural influences, we tested for the presence of BLD under the condition of reflexive force generation. Force output and integrated electromyogram (iEMG) (quadriceps femoris) were measured in 17 male participants after initiation of the myotatic patellar reflex under unilateral and bilateral conditions. A significant BLD of 9.26 ± 1.19 ( P = 0.004) and 16.76 ± 4.69% ( P = 0.001) was found for force and iEMG, respectively. However, because similar findings were not evident during maximal isometric knee extensions, it is difficult to predict the contribution of a spinal mechanism to the BLD under the condition of maximal voluntary activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.