Fibroblast growth factor (FGF) signaling plays critical roles in key biological processes ranging from embryogenesis to wound healing and has strong links to several hallmarks of cancer. Genetic alterations in FGF receptor (FGFR) family members are associated with increased tumor growth, metastasis, angiogenesis, and decreased survival. JNJ-42756493, erdafitinib, is an orally active small molecule with potent tyrosine kinase inhibitory activity against all four FGFR family members and selectivity versus other highly related kinases. JNJ-42756493 shows rapid uptake into the lysosomal compartment of cells in culture, which is associated with prolonged inhibition of FGFR signaling, possibly due to sustained release of the inhibitor. In xenografts from human tumor cell lines or patient-derived tumor tissue with activating FGFR alterations, JNJ-42756493 administration results in potent and dose-dependent antitumor activity accompanied by pharmacodynamic modulation of phospho-FGFR and phospho-ERK in tumors. The results of the current study provide a strong rationale for the clinical investigation of JNJ-42756493 in patients with tumors harboring FGFR pathway alterations.
SummaryR 68 070 or (E)-5-[[[(3-pyridinyl)[3-(trifluoromethyl)phenyl]- methylen]amino]oxy] pentanoic acid (Janssen Research Foundation, Belgium) combines specific thromboxane A2 (TXA2) synthetase inhibition with TXA2/prostaglandin endoperoxide receptor blockade in one molecule.In vitro, the compound specifically inhibits the production of TXB2 from [14C] arachidonic acid by washed human platelets (IC50 = 8.2 × 10-9 M) and by platelet microsomes (IC50 = 3.6 × 10-9 M), of MDA (IC50 = 1.91 × 10-8 M) and of TXB2 (IC50 = 1.47 × 10-8 M) by thrombin-coagulated human platelet-rich plasma (P.R.P.) and whole blood respectively and increases the levels of PGD2, PGE2, PGF2α and 6-keto-PGF1α. The activity of cyclo-oxygenase-, prostacyclin synthetase-, 5-, 12- and 15-lipoxygenase-enzymes are not affected. Additionally, R 68 070 inhibits human platelet aggregation in P.R.P. induced by U 46619 3 × 10-7 M to 2 × 10-6 M (IC50 = 2.08 × 10-6 M to 2.66 × 10-5 M), collagen 0.5 to 2 μg/ml (IC50 = 2.85 × 10-6 M to 4.81 × 10-5 M), arachidonic acid 7.5 × 10-4 M to 2 × 10- M (IC50 = 2.1 × 10-8 M to 3.3 × 10-8 M) and the U 46619 (1 × 10-7 M)-induced accumulation of [32P] phosphatidic acid (IC50 = 5.24 × 10-7 M) in washed human platelets. Collagen (0.75 μg/ml)-induced ATP release (IC50 = 4.1 × 10-6 M), ADP (1 to 2.5 × 10-6 M)-induced second wave aggregation (IC50 = 3.19 × 10-6 M) in P.R.P. as well as the collagen (1 μg/ml)-induced adhesion/aggregation reaction in human whole blood (IC50 = 1.02 × 10-5 M) are reduced as well by the compoun.Primary platelet reactions induced by serotonin, ADP, PAF, or A 23187, platelet adenylate cyclase- and cAMP phosphodiesterase-activity, and platelet inhibitory activities of PGD2, PGI2, PGE2, PGE1 are not modified by R 68 070.This biochemical profile is compatible with a dual mechanism of action of R 68 070, namely TXA2 synthetase inhibition at low concentrations, plus additionally TXA2/prostaglandin endoperoxide receptor blockade at higher concentrations
Fragment-based drug design was successfully applied to maternal embryonic leucine zipper kinase (MELK). A low affinity (160 μM) fragment hit was identified, which bound to the hinge region with an atypical binding mode, and this was optimized using structure-based design into a low-nanomolar and cell-penetrant inhibitor, with a good selectivity profile, suitable for use as a chemical probe for elucidation of MELK biology.
R 75251, a new imidazole derivative, inhibited the conversion of androgens to estrogens, of progestins to androstenedione and testosterone, and of 11-deoxycorticosterone to corticosterone in human placenta microsomes, subcellular fraction of rat testis, bovine adrenocortical mitochondria, in cultured rat granulosa, testicular and adrenal cells, respectively. In vitro, no effect on cholesterol synthesis and cholesterol side-chain cleavage was found at concentrations up to 10 microM. In rat granulosa cells, no effect on progesterone production was detected. In vitro, no effect on steroid radioligand binding was observed. In male volunteers, a single dose of 300 mg of R 75251 significantly lowered plasma testosterone and estradiol for 24 hours and increased plasma concentration of 17 alpha-hydroxyprogesterone and progesterone. As compared with ketoconazole high dose (600 mg b.i.d), R 75251 (300 mg b.i.d) was at least as efficacious as inhibitor of testosterone synthesis when studied during ACTH stimulation. In contrast to ketoconazole, R 75251 did not significantly affect circulating adrenal androgen levels in male volunteers. Precursors of gluco- and mineralocorticoids such as 11-deoxycortisol and 11-deoxycorticosterone accumulated more than after ketoconazole administration. The data show that the cytochrome P450-dependent aromatase, 17-hydroxylase/17,20-lyase, and 11-hydroxylase are the target enzymes for R 75251.
We describe here the identification and characterization of 2 novel inhibitors of the fibroblast growth factor receptor (FGFR) family of receptor tyrosine kinases. The compounds exhibit selective inhibition of FGFR over the closely related VEGFR2 receptor in cell lines and in vivo. The pharmacologic profile of these inhibitors was defined using a panel of human tumor cell lines characterized for specific mutations, amplifications, or translocations known to activate one of the four FGFR receptor isoforms. This pharmacology defines a profile for inhibitors that are likely to be of use in clinical settings in disease types where FGFR is shown to play an important role. Mol Cancer Ther; 10(9); 1542-52. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.