EZH2 is a Polycomb group (PcG) protein that promotes the late-stage development of cancer by silencing a specific set of genes, at least in part through trimethylation of associated histone H3 on Lys 27 (H3K27). Nuclear inhibitor of protein phosphatase-1 (NIPP1) is a ubiquitously expressed transcriptional repressor that has binding sites for the EZH2 interactor EED. Here, we examine the contribution of NIPP1 to EZH2-mediated gene silencing. Studies on NIPP1-deficient cells disclose a widespread and essential role of NIPP1 in the trimethylation of H3K27 by EZH2, not only in the onset of this trimethylation during embryonic development, but also in the maintenance of this repressive mark in proliferating cells. Consistent with this notion, EZH2 and NIPP1 silence a common set of genes, as revealed by gene-expression profiling, and NIPP1 is associated with established Polycomb target genes and with genomic regions that are enriched in Polycomb targets. Furthermore, most NIPP1 target genes are trimethylated on H3K27 and the knockdown of either NIPP1 or EZH2 is often associated with a loss of this modification. Our data reveal that NIPP1 is required for the global trimethylation of H3K27 and is implicated in gene silencing by EZH2.
Protein kinase MELK has oncogenic properties and is highly overexpressed in some tumors. In the present study, we show that a novel MELK inhibitor causes both the inhibition and degradation of MELK, culminating in replication stress and a senescence phenotype.
BelgiumPSP94, for prostatic secretory protein of 94 amino acids, is secreted by the prostate gland and functions as a suppressor of tumor growth and metastasis. The expression of PSP94 is lost in advanced, hormone-refractory prostate cancer and this correlates with an increased expression of the Polycomb protein EZH2 (enhancer of zeste homolog 2), which represses transcription via trimethylation of histone H3 on Lys27 (H3K27). We show here that these events are causally related and that the MSMB gene, which encodes PSP94, is trimethylated on H3K27 in androgen-refractory, but not in androgensensitive prostate cancer cells. Chromatin immunoprecipitation experiments confirmed an association of EZH2 with the MSMB gene. The RNAi-mediated knockdown of EZH2 resulted in a loss of H3K27 trimethylation and an increased expression of the MSMB gene. Conversely, the overexpression of EZH2 was associated with a decreased expression of the MSMB gene. We also demonstrate that MSMB is additionally repressed in androgen-refractory prostate cancer cells by the hypoacetylation of histone H3K9 and the hypermethylation of a CpG island in the promoter region. Our data disclose a hitherto unexplored link between the putative oncogene EZH2 and the tumor suppressor PSP94, and show that MSMB is silenced by EZH2 in advanced prostate cancer cells.
Background: Protein kinase MELK is expressed at very high levels in glioblastomas, but it is not understood how this benefits tumor growth. Results: A deficiency of MELK causes replication stress and is associated with cell cycle arrest and senescence. Conclusion: MELK is required for progression through unperturbed S phase. Significance: The inhibition of MELK emerges as an attractive cancer therapy.
Polycomb group (PcG) proteins are key regulators of stem-cell and cancer biology. They mainly act as repressors of differentiation and tumor-suppressor genes. One key silencing step involves the trimethylation of histone H3 on Lys27 (H3K27) by EZH2, a core component of the Polycomb Repressive Complex 2 (PRC2). The mechanism underlying the initial recruitment of mammalian PRC2 complexes is not well understood. Here, we show that NIPP1, a regulator of protein Ser/Thr phosphatase-1 (PP1), forms a complex with PP1 and PRC2 components on chromatin. The knockdown of NIPP1 or PP1 reduced the association of EZH2 with a subset of its target genes, whereas the overexpression of NIPP1 resulted in a retargeting of EZH2 from fully repressed to partially active PcG targets. However, the expression of a PP1-binding mutant of NIPP1 (NIPP1m) did not cause a redistribution of EZH2. Moreover, mapping of the chromatin binding sites with the DamID technique revealed that NIPP1 was associated with multiple PcG target genes, including the Homeobox A cluster, whereas NIPP1m showed a deficient binding at these loci. We propose that NIPP1 associates with a subset of PcG targets in a PP1-dependent manner and thereby contributes to the recruitment of the PRC2 complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.