This study shows that calcium oxalate crystals cause acute inflammation-mediated necrotic cell death in renal proximal tubular cells, but not in collecting tubule cells. The crystal-induced generation of reactive oxygen species by renal tubular cells is a general response to tissue damage and the increased levels of DNA synthesis seem to reflect regeneration rather than growth stimulation. As long as the renal collecting ducts are not obstructed with crystals, these results do not support an important role for crystal-induced tissue injury in the pathophysiology of calcium oxalate nephrolithiasis.
These results demonstrate that the production of hyaluronan by renal tubular cells is activated during proliferation and in response to mechanical injury and that hyaluronan and CD44 expression is highly polarized. The targeted delivery of hyaluronan to the apical compartment suggests that hyaluronan produced by renal tubular cells supports proliferation/regeneration in the renal tubules, but that it does not contribute to hyaluronan accumulation in the renal interstitium. These data further support the concept that mitogen/stress-induced hyaluronan deposition in the renal tubules increases the risk for crystal retention and stone formation.
Oxalate or calcium oxalate crystal-induced tissue damage could be conducive to renal stone disease. We studied the response of renal proximal (LLC-PK1 and MDCK-II) and collecting (RCCD1 and MDCK-I) tubule cell lines to oxalate ions as well as to calcium oxalate monohydrate (COM) crystals. Cells grown on tissue culture plastic or permeable growth substrates were exposed to high (1 mM) and extremely high (5 and 10 mM) oxalate concentrations, or to a relatively large quantity of crystals (146 microg), after which cell morphology, prostaglandin E(2) (PGE(2)) secretion, [(3)H]thymidine incorporation, total cell numbers and various forms of cell death were studied. Morphological alterations, increased PGE(2) secretion, elevated levels of DNA synthesis and necrotic cell death were induced by extremely high, but not by high oxalate. Crystals were rapidly internalized by proximal tubular cells, which stimulated PGE(2) secretion and DNA synthesis and the release of crystal-containing necrotic cells from the monolayer. Crystals did not bind to, were not taken up by, and did not cause marked responses in collecting tubule cells. These results show that free oxalate is toxic only at supraphysiological concentrations and that calcium oxalate is toxic only to renal tubular cells that usually do not encounter crystals. Based on these results, it is unlikely that oxalate anions or calcium oxalate crystals are responsible for the tissue damage that may precede renal stone formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.