Lipocalin-2 is expressed under pernicious conditions such as intoxication, infection, inflammation and other forms of cellular stress. Experimental liver injury induces rapid and sustained LCN2 production by injured hepatocytes. However, the precise biological function of LCN2 in liver is still unknown. In this study, LCN2(-/-) mice were exposed to short term application of CCl4, lipopolysaccharide and Concanavalin A, or subjected to bile duct ligation. Subsequent injuries were assessed by liver function analysis, qRT-PCR for chemokine and cytokine expression, liver tissue Western blot, histology and TUNEL assay. Serum LCN2 levels from patients suffering from liver disease were assessed and evaluated. Acute CCl4 intoxication showed increased liver damage in LCN2(-/-) mice indicated by higher levels of aminotransferases, and increased expression of inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1/CCL2, resulting in sustained activation of STAT1, STAT3 and JNK pathways. Hepatocytes of LCN2(-/-) mice showed lipid droplet accumulation and increased apoptosis. Hepatocyte apoptosis was confirmed in the Concanavalin A and lipopolysaccharide models. In chronic models (4weeks bile duct ligation or 8weeks CCl4 application), LCN2(-/-) mice showed slightly increased fibrosis compared to controls. Interestingly, serum LCN2 levels in diseased human livers were significantly higher compared to controls, but no differences were observed between cirrhotic and non-cirrhotic patients. Upregulation of LCN2 is a reliable indicator of liver damage and has significant hepato-protective effect in acute liver injury. LCN2 levels provide no correlation to the degree of liver fibrosis but show significant positive correlation to inflammation instead.
In line with dermal fibrosis and scar formation, CCN1/CYR61 is involved in liver injury repair and tissue remodeling. CCN1/CYR61 gene transfer into extracellular matrix-producing liver cells is therefore potentially beneficial in liver fibrotic therapy.
Objective. To investigate the role of interleukin-6 (IL-6) and transforming growth factor pl (TGFp1) in the regulation of tissue inhibitor of metalloproteinases-1 (TIMP-1) synthesis in human articular chondrocytes.Methods. Articular cartilage was obtained from human knee joints 24 hours after death. Chondrocytes were isolated by collagenase digestion and embedded in low-gellingtemperature agarose. After stimulation by cytokines, total RNA was isolated and analyzed by Northern blotting. TIMP-1 protein levels were determined using a competitive enzyme-linked immunosorbent assay.Results. Human chondrocytes in agarose culture expressed messenger RNA (mRNA) for the IL-6 receptor (gp80) and its signal-transducing subunit gp130. In contrast to the findings in a previous study, IL-6 did not stimulate TIMP-1 expression in these cells, whereas TGFPl was an important inducer of TIMP-1 mRNA and protein synthesis.Conclusion. Our findings suggest that TGFBl
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.