Acute lymphoblastic leukemia in infants (< 1 year-of-age) is characterized by a high incidence of MLL rearrangements. Recently, direct targets of the MLL fusion protein have been identified. However, functional validation of the identified targets remained unacknowledged. In this study, we identify CDK6 as a direct target of the MLL fusion protein and an important player in the proliferation advantage of MLL-rearranged leukemia. CDK6 mRNA was significantly higher expressed in MLL-rearranged infant ALL patients compared with MLL wild-type ALL patients (P < 0.001). Decrease of MLL-AF4 and MLL-ENL fusion mRNA expression by siRNAs resulted in downregulation of CDK6, affirming a direct relationship between the presence of the MLL fusion and CDK6 expression. Knockdown of CDK6 itself significantly inhibited proliferation in the MLL-AF4-positive cell line SEM, whereas knockdown of the highly homologous gene CDK4 had virtually no effect on the cell cycle. Furthermore, we show in vitro sensitivity of MLL-rearranged leukemia cell lines to the CDK4/6-inhibitor PD0332991, inducing a remarkable G 1 arrest, and downregulation of its downstream targets pRB1 and EZH2. We therefore conclude that CDK6 is indeed a direct target of MLL fusion proteins, playing an important role in the proliferation advantage of MLL-rearranged ALL cells.
1426 MLL-rearranged acute lymphoblastic leukemia represents a highly aggressive and clinically unfavorable type of childhood leukemia, displaying unique gene expression signatures. Nevertheless, the overwhelming number of differentially expressed genes made it difficult to elucidate the actual “drivers” of the leukemia. However, recent advances demonstrated that MLL fusion proteins recruit the histone methyltransferase DOT1L, leading to H3K79 methylation. Hence, genomic regions displaying aberrant enrichment of H3K79 methylation are prone to mark genes transcriptionally activated by the MLL fusion protein itself. Based on this concept, two independent studies recently identified gene signatures consisting of genes likely to represent direct MLL fusion targets. Yet, functional validation of such genes so far remains unacknowledged. In the present study we confirmed that CDK6 (cyclin-dependent protein kinase 6) represents a direct target of MLL-AF4 in t(4;11)-positive ALL cells. In contrast to its functional homologue CDK4, ChIP-sequencing analysis showed the presence of both MLL and AF4, as well as H3K79 methylation at the CDK6. Moreover, CDK6 mRNA appeared significantly (p<0.001) higher expressed in primary MLL- rearranged infant ALL patient samples when compared with other childhood ALL subtypes without translocations of the MLL gene. Next, using RNA interference, we performed MLL-AF4 and MLL-ENL knockdown experiments in ALL cell lines bearing these corresponding fusion transcripts, resulting in CDK6 down-regulation, whereas CDK4 expression was unaffected. These results emphasize that CDK6 is indeed a genuine transcriptional target of the MLL fusion protein itself. Moreover, direct knockdown of CDK6 itself significantly inhibited proliferation in MLL-rearranged ALL cells, whereas knockdown of CDK4 virtually had no effect on the cell cycle in these cells. Taken together we conclude that CDK6 up-regulation in MLL-rearranged ALL is directly mediated by the MLL fusion itself and provides these cells with a proliferation advantage. Disclosures: No relevant conflicts of interest to declare.
Introduction MLL-rearranged acute lymphoblastic leukemia (ALL) in infants (<1 year) is characterized by high relapse rates and a dismal prognosis. To facilitate the discovery of novel therapeutic targets, we here searched for genes directly influenced by the repression of various MLL fusions.MethodsFor this, we performed gene expression profiling after siRNA-mediated repression of MLL-AF4, MLL-ENL, and AF4-MLL in MLL-rearranged ALL cell line models. The obtained results were compared with various already established gene signatures including those consisting of known MLL-AF4 target genes, or those associated with primary MLL-rearranged infant ALL samples.ResultsGenes that were down-regulated in response to the repression of MLL-AF4 and MLL-ENL appeared characteristically expressed in primary MLL-rearranged infant ALL samples, and often represented known MLL-AF4 targets genes. Genes that were up-regulated in response to the repression of MLL-AF4 and MLL-ENL often represented genes typically silenced by promoter hypermethylation in MLL-rearranged infant ALL. Genes that were affected in response to the repression of AF4-MLL showed significant enrichment in gene expression profiles associated with AF4-MLL expressing t(4;11)+ infant ALL patient samples.ConclusionWe conclude that the here identified genes readily responsive to the loss of MLL fusion expression potentially represent attractive therapeutic targets and may provide additional insights in MLL-rearranged acute leukemias.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.