Abstract. An operational ocean and sea ice forecast model, Barents-2.5, is implemented at MET Norway for short-term forecasting at the coast off Northern Norway, the Barents Sea, and waters around Svalbard. Primary forecast parameters are the sea ice concentration (SIC), sea surface temperature (SST), and ocean currents. The model is also a substantial input for drift modeling of pollutants, ice berg, and in search-and-rescue pertinent applications in the Arctic domain. Barents-2.5 has recently been upgraded to include an Ensemble Prediction System with 24 daily realizations of the model state. SIC, SST and in-situ hydrography are constrained through the Ensemble Kalman Filter (EnKF) data assimilation scheme executed in daily forecast cycles with lead time up to 66 hours. While the ocean circulation is not directly constrained by assimilation of ocean currents, the model ensemble represents the given uncertainty in the short-term current field by retaining the current state for each member throughout forecast cycles. Here we present the model setup and a validation in terms of SIC, SST and in-situ hydrography. The performance of the ensemble to represent the models uncertainty, and the performance of the EnKF to constrain the model state are discussed, in addition to the model’s forecast capabilities for SIC and SST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.