Bone remodeling occurs in an adult's skeleton to adapt its architecture to external loadings. This involves bone resorption by osteoclasts cells followed by formation of new bone by osteoblasts cells. During bone remodeling, osteoclasts and osteoblasts interact with each other by expressing autocrine and paracrine factors that regulate cells' population. Therefore, changes in bone density depend on the amount of each acting cell population. The aim of this paper is to propose a model for the bone remodeling process, which takes into account the opposite activity of both types of cells. For this purpose, a system of differential equations, proposed by Komarova et al. (Bone 33:206-215, 2003), is introduced to describe bone cell interactions using parameters which characterize the autocrine and paracrine factors. Such equations allow us to determine how the autocrine and paracrine factors vary in response to an external stimulus. It is assumed that an equilibrium state can be obtained for values of stimulus near to some reference quantity. Far from this value, unbalanced activity of osteoblasts and osteoclasts is observed, which leads to bone apposition or resorption. The proposed model has been implemented into the finite element software ABAQUS to analyze the qualitative response of a bone structure when subjected to certain mechanical loadings. Obtained results are satisfactory and in accordance with the expected bone remodeling behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.