Data and materials availability: Antibody sequences have been deposited to GenBank under accession numbers MN643173 through MN643554. The cryo-EM maps and refined coordinates were deposited in the EMDB and RCSB PDB databases, respectively, under the following accession numbers: DH270 UCA (EMD-20817 and PDB ID 6UM5), DH270.6 (EMD-20818 and PDB ID 6UM6), and DH270.mu1(EMD-20819 and PDB ID 6UM7). The ARMADiLLO program is available for download at http://sites.duke.edu/ ARMADiLLO. All flow cytometry data are available upon request. All other data are in the main and supplementary figures and text.
Silylation chemistry on porous silicon provides for ultrahigh sensitivity and analyte specificity with desorption/ionization on silicon mass spectrometry (DIOS-MS) analysis. Here, we report that the silylation of oxidized porous silicon offers a DIOS platform that is resistant to air oxidation and acid/base hydrolysis. Furthermore, surface modification with appropriate hydrophobic silanes allows analytes to absorb to the surface via hydrophobic interactions for direct analyte extraction from complex matrixes containing salts and other nonvolatile interferences present in the sample matrix. This enables rapid cleanup by simply spotting the sample onto the modified DIOS target and removing the liquid phase containing the interferences. This approach is demonstrated in the analysis of protein digests and metabolites in biofluids, as well as for the characterizing of inhibitors from their enzyme complex. An unprecedented detection limit of 480 molecules (800 ymol) for des-Arg(9)-bradykinin is reported on a pentafluorophenyl-functionalized DIOS chip.
Dense arrays of single-crystal silicon nanowires (SiNWs) have been used as a platform for laser desorption/ionization mass spectrometry of small molecules, peptides, protein digests, and endogenous and xenobiotic metabolites in biofluids. Sensitivity down to the attomole level has been achieved on the nanowire surfaces by optimizing laser energy, surface chemistry, nanowire diameter, length, and growth orientation. An interesting feature of the nanowire surface is that it requires lower laser energy as compared to porous silicon and MALDI to desorb/ionize small molecules, therefore reducing background ion interference. Taking advantage of their high surface area and fluid wicking capabilities, SiNWs were used to perform chromatographic separation followed by mass analysis of the separated molecules providing a unique platform that can integrate separation and mass spectrometric detection on a single surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.