In this chapter, we present information about the design, fabrication and characterization of optical waveguides obtained by using a protocol of multiple energy ion implantations. This protocol must provide an approach to produce optical waveguides with adequate features, such as dimensions, evanescent field and optical confinement. In general, optical waveguides can be improved by widening the optical barrier or waveguide core through multiple energy ion implantations. Design of optical waveguides must consider effects induced by the ion implantation process, such as modification of substrate density, polarizability and structure. Information will be presented about optical waveguides formed mainly in laser crystals (i.e., Nd:YAG, Nd:YVO 4 ) using light ions such as H and He+ and heavy ions such as C 2 +. In general, these ions decrease the refractive index in the implanted area, producing a barrier that permits guiding in the region near the surface. Furthermore, information about nonlinear optical properties of channel waveguides containing metallic nanoparticles is presented. Composite materials containing metallic nanoparticles embedded in a dielectric matrix such as silica possess interesting properties due to surface plasmon resonance absorption features and the enhancement of the third-order nonlinear optical response. Therefore, nonlinear optical properties in composite waveguides can be used in all-optical switching devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.