The modelling of virtual environments and scenarios is an important area of research for the development of new computer-assisted systems in the areas of engineering and medicine, particularly in the area of biomechanics and biomedical engineering. One of the main issues while designing a virtual environment is the level of realism, which depends on the computing capacity and the level of accuracy and usefulness of the generated data. Thus, the dilemma is between the aesthetic realism and the information utility. This paper proposes a methodology to develop low-cost and high-quality virtual environments and scenarios for computer-aided biomedical applications. The proposed methodology is based on the open-source software Blender and the Visualization Toolkit libraries (VTK). In order to demonstrate the usability of the proposed methodology, the design and development of a computer-assisted biomedical application is presented and analysed.
The maxillofacial surgery is a complex surgical procedure to correct facial malformations located in the head of the patient. A precise and reliable surgical planning is necessary for a successful maxillofacial surgical procedure. The experience and clinical practice of surgeons play a very important role during the surgical procedures. Modern Computer Aided Systems (CAS) have been developed in order to speed up the surgical planning process and to increase the accuracy and reliability of the surgical procedure. However, CAS systems have not been focused on their ability to train and to provide experience and clinical practice to novice surgeons or medical student. In this way CAS systems could be a potential tool to improve the skill of surgeons in order to decrease human errors in the maxillofacial treatment and surgical procedures.
This paper presents an investigation to evaluate the use of virtual reality and haptic systems as a training tool for maxillofacial surgeries, in particular osteotomies procedures. The aim is to evaluate the effect of virtual training on surgeon skills. Thus, a virtual osteotomy system has been developed and is presented. The system is based on an open source computer and programming resources, and makes use of haptic technologies to provide the users with the sense of touch. The virtual osteotomy procedures implemented are based on current surgical orthognathic surgery procedures. Free-form 3D manual cutting of bone is available in the system by means of the haptic device and the force feedback provided to the user, which increases the level of realism of the virtual procedure. The evaluation results show that the haptic-enabled virtual training of osteotomies increases the psychomotor skills of the practitioner, leading to an improved accuracy when carrying out the actual bone cut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.