The scope of this paper is two-fold: firstly it proposes the application of a 1-2-3 Zones approach to Internet of Things (IoT)-related Digital Forensics (DF) investigations. Secondly, it introduces a Next-Best-Thing Triage (NBT) Model for use in conjunction with the 1-2-3 Zones approach where necessary and vice versa. These two 'approaches' are essential for the DF process from an IoT perspective: the atypical nature of IoT sources of evidence (i.e. Objects of Forensic Interest -OOFI), the pervasiveness of the IoT environment and its other unique attributes -and the combination of these attributes -dictate the necessity for a systematic DF approach to incidents. The two approaches proposed are designed to serve as a beacon to incident responders, increasing the efficiency and effectiveness of their IoT-related investigations by maximizing the use of the available time and ensuring relevant evidence identification and acquisition. The approaches can also be applied in conjunction with existing, recognised DF models, methodologies and frameworks.
This paper describes the design of the Forensics Edge Management System (FEMS), a system that autonomously provides security and forensic services within the home Internet of Things (IoT) or smart home context. Within smart homes, users are increasingly being allowed the flexibility to manage and maintain all the solutions that entail. This is evident from the growing number of commercial smart home IoT solutions which are being designed to be manageable by end users. This IoT requirement for usermanageable solutions (without direct or indirect input from vendors beyond the provision of robust systems and solutions) presents a challenge to the traditional concept of Digital Forensics (DF) which is currently an expert-led domain. The FEMS design aims to meet these requirements for autonomy and independence; it is a system that can be integrated into a home-IoT network to conduct preliminary forensic investigations and to provide basic security services.
The Internet of Things (IoT), a metaphor for smart, functional Cyberphysical Environments (CPE), is finding some usefulness in various sectors including healthcare, security, transportation, and the Smart Home (SH). Within the IoT, objects potentially operate autonomously to provide specified services and complete assigned tasks. However, the introduction of new technologies and/or the novel application of existing ones usually herald the discovery of unfamiliar security vulnerabilities, which lead to exploits and sometimes to security breaches. There is existing research that identifies IoT-related security concerns and breaches. This chapter discusses existing Digital Forensics (DF) models and methodologies for their applicability (or not) within the IoT domain using the SH as a case in point. The chapter also makes the argument for smart forensics, the use of a smart autonomous system (tagged the Forensics Edge Management System [FEMS]) to provide forensic services within the self-managed CPE of the SH.
The Internet of Things (IoT), a metaphor for smart, functional Cyberphysical Environments (CPE), is finding some usefulness in various sectors including healthcare, security, transportation, and the Smart Home (SH). Within the IoT, objects potentially operate autonomously to provide specified services and complete assigned tasks. However, the introduction of new technologies and/or the novel application of existing ones usually herald the discovery of unfamiliar security vulnerabilities, which lead to exploits and sometimes to security breaches. There is existing research that identifies IoT-related security concerns and breaches. This chapter discusses existing Digital Forensics (DF) models and methodologies for their applicability (or not) within the IoT domain using the SH as a case in point. The chapter also makes the argument for smart forensics, the use of a smart autonomous system (tagged the Forensics Edge Management System [FEMS]) to provide forensic services within the self-managed CPE of the SH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.