Fungi are recognized as indigenous microbes in natural hypersaline habitats. Aspergillus sp, among other fungi, is predominant in those environments; however, their adaptative abilities are recently studied. This study analyzes the transcriptomic response of an obligate halophile Aspergillus loretoensis under two salinity conditions (4% and 15% NaCl). This fungus shows stress under the low NaCl concentration tested since it overexpresses genes like SOD2 (oxidative stress and oxygen toxicity), ASG (resistance to salinity), and transmembrane transport (ZRT2, OAC1, PMA1, ZRC1, SNQ2, MCH4, YO075, SIT1). Meanwhile, at 15% NaCl, the up-regulated genes at 15% NaCl were related to osmolytes transport (STL1, HXT13, ZRT1), carbohydrate transport, and metabolism (MAL11, PK1, ITR1), all suggesting their adaptive conditions. This fungus expresses interesting metabolic enzymes with potential uses in biotechnology as invertases, isomerases, maltases, and lipases. As well it showed biosynthetic pathways related to oil degradation and antibiotic production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.