The topological evolution of the cleavage surface of a gypsum single crystal during its dissolution in a flowing undersaturated aqueous solution has been observed with an atomic force microscope. The matter transfer from solid to liquid proceeds through the migration of atomic steps. The step velocity has been measured and appears to depend on the force applied by the tip on the surface. Whereas the high force velocity enhancement is likely to stem from corrosive wear, the speed behavior at low force (<10 nN) differs drastically and can be interpreted as a consequence of the pressure solution of the crystal induced by the tip force. The step velocity evolution with the force obeys the known kinetic law of pressure solution. Hence these experiments enable us to evidence a first atomic mechanism at the origin of pressure solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.