A prevalent model is that sharp-wave ripples (SWR) arise ‘spontaneously’ in CA3 and propagate recent memory traces outward to the neocortex to facilitate memory consolidation there. Using voltage and extracellular glutamate transient recording over widespread regions of mice dorsal neocortex in relation to CA1 multiunit activity (MUA) and SWR, we find that the largest SWR-related modulation occurs in retrosplenial cortex; however, contrary to the unidirectional hypothesis, neocortical activation exhibited a continuum of activation timings relative to SWRs, varying from leading to lagging. Thus, contrary to the model in which SWRs arise ‘spontaneously’ in the hippocampus, neocortical activation often precedes SWRs and may thus constitute a trigger event in which neocortical information seeds associative reactivation of hippocampal ‘indices’. This timing continuum is consistent with a dynamics in which older, more consolidated memories may in fact initiate the hippocampal-neocortical dialog, whereas reactivation of newer memories may be initiated predominantly in the hippocampus.
Memory formation is hypothesized to involve the generation of event-specific neural activity patterns during learning and the subsequent spontaneous reactivation of these patterns. Here, we present evidence that these processes can also be observed in urethane-anesthetized rats and are enhanced by desynchronized brain state evoked by tail pinch, subcortical carbachol infusion, or systemic amphetamine administration. During desynchronization, we found that repeated tactile or auditory stimulation evoked unique sequential patterns of neural firing in somatosensory and auditory cortex and that these patterns then reoccurred during subsequent spontaneous activity, similar to what we have observed in awake animals. Furthermore, the formation of these patterns was blocked by an NMDA receptor antagonist, suggesting that the phenomenon depends on synaptic plasticity. These results suggest that anesthetized animals with a desynchronized brain state could serve as a convenient model for studying stimulus-induced plasticity to improve our understanding of memory formation and replay in the brain.
In the current research on measuring complex behaviours/phenotyping in rodents, most of the experimental design requires the experimenter to remove the animal from its home-cage environment and place it in an unfamiliar apparatus (novel environment). This interaction may influence behaviour, general well-being, and the metabolism of the animal, affecting the phenotypic outcome even if the data collection method is automated. Most of the commercially available solutions for home-cage monitoring are expensive and usually lack the flexibility to be incorporated with existing home-cages. Here we present a low-cost solution for monitoring home-cage behaviour of rodents that can be easily incorporated to practically any available rodent home-cage. To demonstrate the use of our system, we reliably predict the sleep/wake state of mice in their home-cage using only video. We validate these results using hippocampal local field potential (LFP) and electromyography (EMG) data. Our approach provides a low-cost flexible methodology for high-throughput studies of sleep, circadian rhythm and rodent behaviour with minimal experimenter interference.
Recent advances in artificial intelligence (AI) and neuroscience are impressive. In AI, this includes the development of computer programs that can beat a grandmaster at GO or outperform human radiologists at cancer detection. A great deal of these technological developments are directly related to progress in artificial neural networks-initially inspired by our knowledge about how the brain carries out computation. In parallel, neuroscience has also experienced significant advances in understanding the brain. For example, in the field of spatial navigation, knowledge about the mechanisms and brain regions involved in neural computations of cognitive maps-an internal representation of space-recently received the Nobel Prize in medicine. Much of the recent progress in neuroscience has partly been due to the development of technology used to record from very large populations of neurons in multiple regions of the brain with exquisite temporal and spatial resolution in behaving animals. With the advent of the vast quantities of data that these techniques allow us to collect there has been an increased interest in the intersection between AI and neuroscience, many of these intersections involve using AI as a novel tool to explore and analyze these large data sets. However, given the common initial motivation point-to understand the brain-these disciplines could be more strongly linked. Currently much of this potential synergy is not being realized. We propose that spatial navigation is an excellent area in which these two disciplines can converge to help advance what we know about the brain. In this review, we first summarize progress in the neuroscience of spatial navigation and reinforcement learning. We then turn our attention to discuss how spatial navigation has been modeled using descriptive, mechanistic, and normative approaches and the use of AI in such models. Next, we discuss how AI can advance neuroscience, how neuroscience can advance AI, and the limitations of these approaches. We finally conclude by highlighting promising lines of research in which spatial navigation can be the point of intersection between neuroscience and AI and how this can contribute to the advancement of the understanding of intelligent behavior.
Behavior provides important insights into neuronal processes. For example, analysis of reaching movements can give a reliable indication of the degree of impairment in neurological disorders such as stroke, Parkinson disease, or Huntington disease. The analysis of such movement abnormalities is notoriously difficult and requires a trained evaluator. Here, we show that a deep neural network is able to score behavioral impairments with expert accuracy in rodent models of stroke. The same network was also trained to successfully score movements in a variety of other behavioral tasks. The neural network also uncovered novel movement alterations related to stroke, which had higher predictive power of stroke volume than the movement components defined by human experts. Moreover, when the regression network was trained only on categorical information (control = 0; stroke = 1), it generated predictions with intermediate values between 0 and 1 that matched the human expert scores of stroke severity. The network thus offers a new data-driven approach to automatically derive ratings of motor impairments. Altogether, this network can provide a reliable neurological assessment and can assist the design of behavioral indices to diagnose and monitor neurological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.