We say that a Hurwitz polynomialptis a Hadamardized polynomial if there are two Hurwitz polynomialsftandgtsuch thatf∗g=p, wheref∗gis the Hadamard product offandg. In this paper, we prove that the set of all Hadamardized Hurwitz polynomials is an open, unbounded, nonconvex, and arc-connected set. Furthermore, we give a result so that a fourth-degree Hurwitz interval polynomial is a Hadamardized polynomial family and we discuss an approach of differential topology in the study of the set of Hadamardized Hurwitz polynomials.
This paper presents a brief review on the current applications and perspectives on the stability of complex dynamical systems, with an emphasis on three main classes of systems such as delay-free systems, time-delay systems, and systems with uncertainties in its parameters, which lead to some criteria with necessary and/or sufficient conditions to determine stability and/or stabilization in the domains of frequency and time. Besides, criteria on robust stability and stability of nonlinear time-delay systems are presented, including some numerical approaches.
The main aim of this paper is to generate multistability from a type of unstable systems which
have all their roots in the right half of the complex plane. For the realization of this, we use a system of linear
differential equations that consists of two parameters. First we use an instability parameter to transform an
unstable system to a type of system capable of generating attractors by means of a piecewise linear function.
Then we use another bifurcation parameter to change from multiscroll attractors in a mono-stable state into
several single-scroll atractors in multi-stable states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.