Phosphatidic acid (PA) is a minor but important phospholipid that, through specific interactions with proteins, plays a central role in several key cellular processes. The simple yet unique structure of PA, carrying just a phosphomonoester head group, suggests an important role for interactions with the positively charged essential residues in these proteins. We analyzed by solid-state magic angle spinning 31 P NMR and molecular dynamics simulations the interaction of low concentrations of PA in model membranes with positively charged side chains of membrane-interacting peptides. Surprisingly, lysine and arginine residues increase the charge of PA, predominantly by forming hydrogen bonds with the phosphate of PA, thereby stabilizing the protein-lipid interaction. Our results demonstrate that this electrostatic/hydrogen bond switch turns the phosphate of PA into an effective and preferred docking site for lysine and arginine residues. In combination with the special packing properties of PA, PA may well be nature's preferred membrane lipid for interfacial insertion of positively charged membrane protein domains. Phosphatidic acid (PA)7 is a minor but important bioactive lipid involved in at least three essential and likely interrelated processes in a typical eukaryotic cell. PA is a key intermediate in the biosynthetic route of the main membrane phospholipids and triglycerides (1); it is involved in membrane dynamics, i.e. fission and fusion (2-4), and has important signaling functions (5-7). The role of PA in membrane dynamics and signaling is most likely 2-fold, either via an effect on the packing properties of the membrane lipids or via the specific binding of effector proteins (4, 7-9). The origin of the specific binding of effector proteins to PA is not known.The PA binding domains thus far identified (for review, see Ref. 10) and more recently (7)) are diverse and share no apparent sequence homology, in contrast to other lipid binding domains, such as e.g. the PH, PX, FYVE, and C2 domains (11-15). One general feature that the PA binding domains do have in common is the presence of basic amino acids (7). Where examined in detail, these basic amino acids were shown to be essential for the interaction with PA, which underscores the importance of electrostatic interactions. Indeed, the negatively charged phosphomonoester head group of PA would be expected to interact electrostatically with basic amino acids in a lipid binding domain. However, such a simple electrostatic interaction cannot explain the strong preference of PA-binding proteins for PA over other, often more abundant, negatively charged phospholipids.In a recent study we showed that the phosphomonoester head group of PA has remarkable properties (8). The phosphomonoester head group is able to form an intramolecular hydrogen bond upon initial deprotonation (when its charge is Ϫ1), which stabilizes the second proton against dissociation. We provided evidence that competing hydrogen bonds, e.g. from the primary amine of the head group of phosphatidylet...
The local generation of phosphatidic acid plays a key role in the regulation of intracellular membrane transport through mechanisms which are largely unknown. Phosphatidic acid may recruit and activate downstream effectors, or change the biophysical properties of the membrane and directly induce membrane bending and/or destabilization. To evaluate these possibilities, we determined the phase properties of phosphatidic acid and lysophosphatidic acid at physiological conditions of pH and ion concentrations. In single-lipid systems, unsaturated phosphatidic acid behaved as a cylindrical, bilayer-preferring lipid at cytosolic conditions (37°C, pH 7.2, 0.5 mM free Mg 2+ ), but acquired a type-II shape at typical intra-Golgi conditions, a mildly acidic pH and submillimolar free Ca 2+ (pH 6.6±5.9, 0.3 mM Ca 2+ ). Lysophosphatidic acid formed type-I lipid micelles in the absence of divalent cations, but anhydrous cationlysophosphatidic acid bilayer complexes in their presence. These data suggest a similar molecular shape for phosphatidic acid and lysophosphatidic acid at cytosolic conditions; however, experiments in mixed-lipid systems indicate that their shape is not identical. Lysophosphatidic acid stabilized the bilayer phase of unsaturated phosphatidylethanolamine, while the opposite effect was observed in the presence of phosphatidic acid. These results support the hypothesis that a conversion of lysophosphatidic acid into phosphatidic acid by endophilin or BARS (50 kDa brefeldin A ribosylated substrate) may induce negative spontaneous monolayer curvature and regulate endocytic and Golgi membrane fission. Alternative models for the regulation of membrane fission based on the strong dependence of the molecular shape of (lyso)phosphatidic acid on pH and divalent cations are also discussed.
The formation of phosphatidic acid (PA) from lysophosphatidic acid (LPA), diacylglycerol, or phosphatidylcholine plays a key role in the regulation of intracellular membrane fission events, but the underlying molecular mechanism has not been resolved. A likely possibility is that PA affects local membrane curvature facilitating membrane bending and fission. To examine this possibility, we determined the spontaneous radius of curvature (R 0p ) of PA and LPA, carrying oleoyl fatty acids, using well-established X-ray diffraction methods. We found that, under physiological conditions of pH and salt concentration (pH 7.0, 150 mM NaCl), the R 0p values of PA and LPA were -46 Å and +20 Å, respectively. Thus PA has considerable negative spontaneous curvature while LPA has the most positive spontaneous curvature of any membrane lipid measured to date. The further addition of Ca 2+ did not significantly affect lipid spontaneous curvature; however, omitting NaCl from the hydration buffer greatly reduced the spontaneous curvature of PA, turning it into a cylindrically shaped lipid molecule (R 0p of -1.3 × 10 2 Å). Our quantitative data on the spontaneous radius of curvature of PA and LPA at a physiological pH and salt concentration will be instrumental in developing future models of biomembrane fission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.