Bacterial infections and antibiotic resistance, particularly by Gram-negative pathogens, have become a global healthcare crisis. We report the design of a class of cationic antimicrobial polymers that cluster local facial amphiphilicity from repeating units to enhance interactions with bacterial membranes without requiring a globally conformational arrangement associated with highly unfavorable entropic loss. This concept of macromolecular architectures is demonstrated with a series of multicyclic natural product-based cationic polymers. We have shown that cholic acid derivatives with three charged head groups are more potent and selective than lithocholic and deoxycholic counterparts, particularly against Gram-negative bacteria. This is ascribed to the formation of true facial amphiphilicity with hydrophilic ion groups oriented on one face and hydrophobic multicyclic hydrocarbon structures on the opposite face. Such local facial amphiphilicity is clustered via a flexible macromolecular backbone in a concerted way when in contact with bacterial membranes.
New antimicrobial agents are needed to address ever-increasing antimicrobial resistance and a growing epidemic of infections caused by multidrug resistant pathogens. We design nanostructured antimicrobial copolymers containing multicyclic natural products that bear facial amphiphilicity. Bile acid based macromolecular architectures of these nanostructures can interact preferentially with bacterial membranes. Incorporation of polyethylene glycol into the copolymers not only improved the colloidal stability of nanostructures but also increased the biocompatibility. This study investigated the effects of facial amphiphilicity, polymer architectures, and self-assembled nanostructures on antimicrobial activity. Advanced nanostructures such as spheres, vesicles, and rod-shaped aggregates are formed in water from the facial amphiphilic cationic copolymers via supramolecular interactions. These aggregates were particularly interactive toward Gram-positive and Gram-negative bacterial cell membranes and showed low hemolysis against mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.