Abstract. The Wilm's tumor gene (WT1), encoding a transcription factor that modulates the expression of certain genes that are involved in proliferation and apoptosis, is overexpressed in numerous solid tumors. WT1 is important for cell proliferation and in the diagnosis of melanoma. The objectives of this study were to investigate whether WT1 silencing is capable of synergizing with chemotherapeutic agents and whether this silencing is capable of sensitizing cancer cells to doxorubicin and cisplatin in the B16F10 murine melanoma cell line. In the present study, B16F10 cells were simultaneously treated with median lethal doses (LD50s) of WT1-1 or WT1-2 small hairpin RNAs (shRNAs) and chemotherapeutic agents. A total of 24 h posttransfection, a [3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide assay] MTT assay was performed. To determine whether shRNA interference (shRNAi) is capable of sensitizing B16F10 cells to chemotherapeutic agents, cells were transfected with an LD50 of each of the recombinant plasmids, treated with varying concentrations of doxorubicin or cisplatin 24 h post-transfection, and analyzed 48 h later for inhibition of cell proliferation using the MTT assay. We observed that WT1-RNAi and the two chemotherapeutic agents acted synergistically to inhibit B16F10 cell proliferation. The greatest inhibition of cell proliferation was observed with the WT1-2/cisplatin (91%) and WT1-1/cisplatin combinations (85%). WT1 silencing using shRNAi induced the chemosensitization of cells to doxorubicin and cisplatin, with the greatest inhibition (85%) of cell proliferation being observed in the cells treated with the WT1-2/cisplatin 6 ng/µl combination. Our results provide direct evidence that WT1 gene silencing has a synergistic effect with chemotherapeutic drugs and sensitizes B16F10 melanoma cells to doxorubicin and cisplatin. This suggests that these combination strategies are potentially utilized in melanoma therapy.
The global incidence of melanoma is increasing. Mortality from melanoma is influenced primarily by metastasis in advanced stages of the disease. Current treatments are largely ineffective; thus, novel gene delivery approaches that target tumor-specific markers may be useful for the treatment of melanoma. Systemic administration of encapsulated RNA-interference plasmids targeted against tumor cells is a potential alternative therapy for cancer. Formulations of transferrin (Tf)-conjugated polyethylene glycol (PEG) liposomes loaded with short hairpin RNA (shRNA) against (Lip + RNAi + Tf), PEG liposomes loaded with shRNA against (Lip + RNAi), Tf-conjugated PEG liposomes loaded with pEGFP-N3 (Lip + GFP + Tf) and saline solution as negative control (untreated) were administered systemically to C57BL/6 mice implanted subcutaneously with a melanoma cell line. Tumor volume, body weight, tumor weight, survival and relative expression of were evaluated. No significant differences in net body weight were identified between groups. The tumor volume decreased from 7,871 mm (SD±2,087) in the untreated group to 5,981 mm (SD±2,099) in the Lip + RNAi + Tf group. The tumor weight was reduced, from 8.8 g (SD±0.30) in the untreated group to 5.5 g (SD±0.87) in the Lip + RNAi + Tf group. An increase of 37% in survival was also observed in the group treated with Lip + RNAi + Tf in comparison to the untreated group. Tumors treated with Lip + RNAi + Tf also showed a decrease in the mean relative expression of WT1 of 0.21 (SD±0.28) folds compared with 1.8 (SD±2.49) folds in untreated group, 1.34 (SD±0.43) folds in Lip + RNAi group and of 1.89 (SD±0.69) folds in Lip + GFP + Tf group. Systemic administration of transferrin-conjugated PEG liposomes loaded with shRNA against reduced WT1 expression and tumor size and increased survival.
Cuphea aequipetala (C. aequipetala) has been used in Mexican traditional medicine since prehispanic times to treat tumors. In this paper, we evaluated the antiproliferative and apoptotic effect of the methanolic and aqueous extracts of C. aequipetala on several cancer cell lines including the B16F10 cell line of murine melanoma and carried a murine model assay. In vitro assay analyzed the effect in the cellular cycle and several indicators of apoptosis, such as the caspase-3 activity, DNA fragmentation, phosphatidylserine exposure (Annexin-V), and induction of cell membrane permeabilization (propidium iodide) in the B16F10 cells. In vivo, groups of C57BL/6 female mice were subcutaneously injected with 5x105 B16F10 cells and treated with 25 mg/mL of C. aequipetala extracts via oral. Aqueous and methanolic extracts showed a cytotoxic effect in MCF-7, HepG2, and B16F10 cell lines. The methanolic extract showed more antiproliferative effect with less concentration, and for this reason, the in vitro experiments were only continued with it. This extract was able to induce accumulation of cells on G1 phase of the cell cycle; moreover, it was able to induce DNA fragmentation and increase the activity of caspase-3 in B16F10 cells. On the other hand, in the murine model of melanoma, the aqueous extract showed a greater reduction of tumor size in comparison with the methanolic extract, showing an 80% reduction versus one of around 31%, both compared with the untreated control, indicating a better antitumor effect of C. aequipetala aqueous extract via oral administration. In conclusion, the in vitro data showed that both C. aequipetala extracts were able to induce cytotoxicity through the apoptosis pathway in B16F10 cells, and in vivo, the oral administration of aqueous extract reduces the melanoma tumoral mass, suggesting an important antitumoral effect and the perspective to search for effector molecules involved in it.
The increased incidence of cancer in recent years is associated with a high rate of mortality. Numerous types of cancer have a low percentage of CD133+ cells, which have similar features to stem cells. The CD133 molecule is involved in apoptosis and cell proliferation. The aim of this study was to determine the biological effect of CD133 suppression and its role in the chemosensitization of cancer cell lines. RT-PCR and immunocytochemical analyses indicated that CD133 was expressed in the cancer cell lines B16F10, MCF7 and INER51. Downregulation of CD133 by transfection with an antisense sequence (As-CD133) resulted in a decrease in cancer cell viability of up to 52, 47 and 22% in B16F10, MCF-7 and INER51 cancer cell lines, respectively. This decreased viability appeared to be due to the induction of apoptosis. In addition, treatment with As-CD133 in combination with cisplatin had a synergic effect in all of the cancer cell lines analyzed, and in particular, significantly decreased the viability of B16F10 cancer cells compared with each treatment separately (3.1% viability for the combined treatment compared with 48% for 0.4 μg As-CD133 and 25% for 5 ng/μl cisplatin; P<0.05). The results indicate that the downregulation of CD133 by antisense is a potential therapeutic target for cancer and has a synergistic effect when administered with minimal doses of the chemotherapeutic drug cisplatin, suggesting that this combination strategy may be applied in cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.