BackgroundThe Smad7 protein is negative regulator of the TGF-β signaling pathway, which is upregulated in patients with breast cancer. miRNAs regulate proteins expressions by arresting or degrading the mRNAs. The purpose of this work is to identify a miRNAs profile that regulates the expression of the mRNA coding for Smad7 in breast cancer using the data from patients with breast cancer obtained from the Cancer Genome Atlas Project.MethodsWe develop an automatic search method based on genetic algorithms to find a predictive model based on deep neural networks (DNN) which fit the set of biological data and apply the Olden algorithm to identify the relative importance of each miRNAs.ResultsA computational model of non-linear regression is shown, based on deep neural networks that predict the regulation given by the miRNA target transcripts mRNA coding for Smad7 protein in patients with breast cancer, with R2 of 0.99 is shown and MSE of 0.00001. In addition, the model is validated with the results in vivo and in vitro experiments reported in the literature. The set of miRNAs hsa-mir-146a, hsa-mir-93, hsa-mir-375, hsa-mir-205, hsa-mir-15a, hsa-mir-21, hsa-mir-20a, hsa-mir-503, hsa-mir-29c, hsa-mir-497, hsa-mir-107, hsa-mir-125a, hsa-mir-200c, hsa-mir-212, hsa-mir-429, hsa-mir-34a, hsa-let-7c, hsa-mir-92b, hsa-mir-33a, hsa-mir-15b, hsa-mir-224, hsa-mir-185 and hsa-mir-10b integrate a profile that critically regulates the expression of the mRNA coding for Smad7 in breast cancer.ConclusionsWe developed a genetic algorithm to select best features as DNN inputs (miRNAs). The genetic algorithm also builds the best DNN architecture by optimizing the parameters. Although the confirmation of the results by laboratory experiments has not occurred, the results allow suggesting that miRNAs profile could be used as biomarkers or targets in targeted therapies.Electronic supplementary materialThe online version of this article (10.1186/s12976-018-0095-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.