This paper proposes a new blind end-member and abundance extraction (BEAE) method for multispectral fluorescence lifetime imaging microscopy (m-FLIM) data. The chemometrical analysis relies on an iterative estimation of the fluorescence decay end-members and their abundances. The proposed method is based on a linear mixture model with positivity and sum-to-one restrictions on the abundances and end-members to compensate for signature variability. The synthesis procedure depends on a quadratic optimization problem, which is solved by an alternating least-squares structure over convex sets. The BEAE strategy only assumes that the number of components in the analyzed sample is known a spriori. The proposed method is first validated by using synthetic m-FLIM datasets at 15, 20, and 25 dB signal-to-noise ratios. The samples simulate the mixed response of tissue containing multiple fluorescent intensity decays. Furthermore, the results were also validated with six m-FLIM datasets from fresh postmortem human coronary atherosclerotic plaques. A quantitative evaluation of the BEAE was made against two popular techniques: minimum volume constrained nonnegative matrix factorization (MVC-NMF) and multivariate curve resolution-alternating least-squares (MCR-ALS). Our proposed method (BEAE) was able to provide more accurate estimations of the end-members: 0.32% minimum relative error and 13.82% worst-case scenario, despite different initial conditions in the iterative optimization procedure and noise effect. Meanwhile, MVC-NMF and MCR-ALS presented more variability in estimating the end-members: 0.35% and 0.34% for minimum errors and 15.31% and 13.25% in the worst-case scenarios, respectively. This tendency was also maintained for the abundances, where BEAE obtained 0.05 as the minimum absolute error and 0.12 in the worst-case scenario; MCR-ALS and MVC-NMF achieved 0.04 and 0.06 for the minimum absolute errors, and 0.15 and 0.17 under the worst-case conditions, respectively. In addition, the average computation time was evaluated for the synthetic datasets, where MVC-NMF achieved the fastest time, followed by BEAE and finally MCR-ALS. Consequently, BEAE improved MVC-NMF in convergence to a local optimal solution and robustness against signal variability, and it is roughly 3.6 time faster than MCR-ALS.
This study presents different methods for automatic sleep classification based on heart rate variability (HRV), respiration and movement signals recorded through bed sensors. Two methods for feature extraction have been implemented: time variant-autoregressive model (TVAM) and wavelet discrete transform (WDT); the obtained features are fed into two classifiers: Quadratic (QD) and Linear (LD) discriminant for staging sleep in REM, nonREM and WAKE periods. The performances of all the possible combinations of feature extractors and classifiers are compared in terms of accuracy and kappa index, using clinical polysomographyc evaluation as golden standard. 17 recordings from healthy subjects, including also polisomnography, were used to train and test the algorithms. When automatic classification is compared. QD-TVAM algorithm achieved a total accuracy of 76.81 ± 7.51 % and kappa index of 0.55 ± 0.10, while LD-WDT achieved a total accuracy of 79 ± 10% and kappa index of 0.51 ± 0.17. The results suggest that a good sleep evaluation can be achieved through non-conventional recording systems that could be used outside sleep centers.
This study addresses the problem of detection and isolation of open-switch faults in voltage source inverters by processing the stator current measurements. First, the resulting post-fault trajectories for the stator currents are analytically derived for single and concurrent faults (21 classes) by using Fourier series. This analysis motivated the proposed approach, which is based on the resulting pattern of the stator currents in the dq-frame after a fault, where a histogram of the trajectory is calculated by dividing the plane in 24 equally spaced sectors. From the calculated histogram, a distinctive signature is associated to each fault trajectory in the dq-plane. Single and double faults in the power semiconductors are analysed that all provide linearly independent signatures for fault isolation. The proposed isolation methodology is independent of the load torque (system disturbance), supply frequency and only requires the information of the stator currents. Furthermore, since the isolation stage is focused on the angle of the current trajectories in the dq-plane, open-and closed-loop configurations of a variable speed drive can be simultaneously handled. Experimental results with a test bench of 3/4 HP induction motor under single and concurrent faults validated the proposed methodology.
Multispectral fluorescence lifetime imaging (m-FLIM) can potentially allow identifying the endogenous fluorophores present in biological tissue. Quantitative description of such data requires estimating the number of components in the sample, their characteristic fluorescent decays, and their relative contributions or abundances. Unfortunately, this inverse problem usually requires prior knowledge about the data, which is seldom available in biomedical applications. This work presents a new methodology to estimate the number of potential endogenous fluorophores present in biological tissue samples from time-domain m-FLIM data. Furthermore, a completely blind linear unmixing algorithm is proposed. The method was validated using both synthetic and experimental m-FLIM data. The experimental m-FLIM data include in-vivo measurements from healthy and cancerous hamster cheek-pouch epithelial tissue, and ex-vivo measurements from human coronary atherosclerotic plaques. The analysis of m-FLIM data from in-vivo hamster oral mucosa identified healthy from precancerous lesions, based on the relative concentration of their characteristic fluorophores. The algorithm also provided a better description of atherosclerotic plaques in term of their endogenous fluorophores. These results demonstrate the potential of this methodology to provide quantitative description of tissue biochemical composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.