Standard Reference Materials SRMs 2241 through 2243 are certified spectroscopic standards intended for the correction of the relative intensity of Raman spectra obtained with instruments employing laser excitation wavelengths of 785 nm, 532 nm, or 488 nm/514.5 nm. These SRMs each consist of an optical glass that emits a broadband luminescence spectrum when illuminated with the Raman excitation laser. The shape of the luminescence spectrum is described by a polynomial expression that relates the relative spectral intensity to the Raman shift with units in wavenumber (cm(-1)). This polynomial, together with a measurement of the luminescence spectrum of the standard, can be used to determine the spectral intensity-response correction, which is unique to each Raman system. The resulting instrument intensity-response correction may then be used to obtain Raman spectra that are corrected for a number of, but not all, instrument-dependent artifacts. Peak area ratios of the intensity-corrected Raman spectrum of cyclohexane are presented as an example of a methodology to validate the spectral intensity calibration process and to illustrate variations that can occur in this measurement.
Lattice dynamic calculations for the sepiolite and palygorskite structures using polarized Raman and FTIR spectra provide a fundamental basis for interpreting spectral features by assigning vibrational modes. The Si-O stretch and O-Si-O bond bending force constants determined for palygorskite are similar to equivalent values calculated previously for other phyllosilicates. The Mg-O bond stretch values, on the other hand, are about half of those determined for the equivalent Al-O and Mg-O bond stretch environments in other phyllosilicates, suggesting that the bonding within the octahedral ribbons in palygorskite and sepiolite is weaker than that in the continuous octahedral sheets in micas. The weaker bonding allows more flexible octahedral environments in palygorskite and sepiolite, giving rise to higher probabilities for cation substitutions and vacancies relative to the micas. Above ∼700 cm−1 in the IR and 750 cm−1 in the Raman spectra, the eigenmodes are dominated by atomic displacements within the silicate sheets. Below 700 cm−1 the eigenmodes become mixed with motions among the Mg octahedra and the silicate sheets; the eigenmodes assigned to the most prominent peaks in the Raman spectra (near 700 cm−1) belong to this group. As mode frequencies decrease, the corresponding eigenmodes evolve from more localized Mg-O stretch, O-Mg-O bend and O-Si-O bend motions to longer-range motions such as silicate sheet deformations caused by silicate tetrahedra rotation and silicate sheet shearing around the Mg-octahedral sheets.
A conventional laser Raman spectrometer has been modified and used to obtain useful Raman spectra from discrete solid particles as small as 0.7 µm in linear dimensions. Spectra obtained from single, micrometer-sized particles of several inorganic and organic compounds are reported. Simplified calculations are discussed which provide an estimate of detectability levels and other problems associated with these measurements. Certain parameters that must be considered in the design of an instrument especially intended for use in the chemical characterization of single fine particles are reviewed in the light of this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.